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Group B Streptococcus commonly colonises healthy adults without symptoms,
yet under certain circumstances displays the ability to invade host tissues, evade
immune detection and cause serious invasive disease. Consequently, Group B
Streptococcus remains a leading cause of neonatal pneumonia, sepsis and
meningitis. Here we review recent information on the bacterial factors and
mechanisms that direct host–pathogen interactions involved in the
pathogenesis of Group B Streptococcus infection. New research on host
signalling and inflammatory responses to Group B Streptococcus infection is
summarised. An understanding of the complex interplay between Group B
Streptococcus and host provides valuable insight into pathogen evolution and
highlights molecular targets for therapeutic intervention.

GBS (Group B Streptococcus/-cocci) is a leading
agent of severe, invasive bacterial infection in
human newborns. Neonatal infection with this
opportunistic pathogen can present as early-
onset or late-onset disease. In early-onset cases,
bacteria are transferred from the mother to the
infant in utero, following ascending infection of
the placental membranes, or during passage
through the birth canal, by aspiration of
infected vaginal fluids. Early-onset neonatal
infection manifests within the first few hours or
days of life, often presenting as pneumonia and

respiratory failure, which can quickly progress
to bacteraemia and septic shock. By contrast,
late-onset GBS disease can occur in infants up
to several months old, and is distinguished by
bloodstream infection with a high rate (40–
60%) of progression to meningitis (Ref. 1).
Infants that survive GBS meningitis can suffer
serious long-term neurological consequences,
such as seizures, hearing loss and cognitive
impairment. Serious GBS infections are
increasingly recognised in adult populations,
particularly in the elderly and individuals
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compromised by underlying medical conditions.
More than 40% of all invasive GBS cases in the
USA occur past infancy (Ref. 2).

The development of GBS disease reflects
successful bacterial colonisation of the vaginal
epithelium, penetration of placental or
epithelial barriers, resistance to immune
clearance allowing bloodstream survival and, in
cases of meningitis, the ability to breach the
endothelial blood–brain barrier (BBB). In
overcoming these obstacles, GBS expresses a
diverse array of surface-associated and secreted
virulence factors that mediate specific host-cell
interactions and interfere with innate immune
clearance mechanisms. The present review
explores knowledge of GBS virulence
mechanisms at each key step of disease
progression, with particular emphasis on the
most recent molecular insights gained from
studies of isogenic bacterial mutants using in
vitro and in vivo models of GBS infection.

Adherence to host epithelial surfaces
The pathogenesis of GBS disease can first be traced
toasymptomaticmucosalcolonisation,particularly
of the maternal urogenital tract. Approximately
25% of healthy adults carry GBS, and the
majority of babies born to a mother who
harbours the bacteria will also become colonised
(Ref. 3). GBS bind avidly to human vaginal
epithelial cells under the low pH conditions
characteristic of vaginal mucosa, through the low
avidity interactions of cell-wall-associated
lipoteichoic acid (LTA) and via higher-affinity
interactions mediated by hydrophobic GBS
surface proteins. Many of these GBS–host-cell
interactions involve attachment of the bacterium
to extracellular matrix (ECM) molecules such as
fibronectin, fibrinogen and laminin, which in
turn bind host-cell-surface proteins such as
integrins (Fig. 1).

ScpB, a GBS cell-surface protein previously
characterised for its ability to cleave the
complement-derived chemoattractant C5a, was
identified in a phage-display screen for
fibronectin binding (Ref. 4). The dual
functionality of ScpB was confirmed by
decreased fibronectin binding of isogenic GBS
ScpB deletion mutants and the direct
interaction of recombinant ScpB with solid-
phase fibronectin (Ref. 5). ScpB contains five
distinct domains, including an N-terminal
protease domain and three fibronectin type III

domains (Fn1–Fn3) at the C-terminus. RGD
motifs in the protease domain and between Fn1
and Fn2 bind to integrins, which may promote
both cellular adherence and complement
proteolysis by stabilising ScpB to allow C5a
binding (Ref. 6). Naturally occurring ScpB
variants with a deletion that destroys peptidase
function retain the capacity to bind fibronectin
(Refs 7, 8). Further targeted-mutagenesis studies
demonstrate that GBS adherence to laminin
involves the adhesin Lmb (Ref. 9); attachment to
fibrinogen is mediated by repetitive motifs
within the surface-anchored protein FbsA
(Ref. 10); and the serine-rich repeat domain
protein Srr-1 binds human keratin 4 (Ref. 11). In
each case, these receptor–ligand interactions
promote GBS adherence to epithelial cells. A
recombinant form of GBS surface protein LrrG,
containing the leucine-rich-repeat (LRR) motifs
found in many bacterial invasins, binds to
epithelial cells in a dose-dependent manner,
suggesting that it may also serve an adhesin
function during GBS infection (Ref. 12).

GBS were recently revealed to express pili
(Ref. 13), filamentous cell-surface appendages
better studied in Gram-negative bacteria, where
they are known to facilitate host-cell attachment
and colonisation (Ref. 14). Among eight
sequenced GBS genomes, two genetic loci
encoding pili were identified, the second
existing in one of two variants, although not
all genomes contain both loci (Ref. 15). ‘GBS
pilus island 2’ includes the genes encoding
PilB, an LP(x)TG-motif-containing protein that
polymerises to form a pilus backbone, and
accessory pilus proteins PilA and PilC (Refs 16,
17). Epithelial cell adherence was reduced in
isogenic GBS mutants lacking PilA or PilC, but
not those lacking PilB (Ref. 16). The crystal
structure of the PilC homologue in GBS pilus
island 1 reveals two IgG-like fold domains (N1
and N2), the latter of which is required for
epithelial cell binding (Ref. 18).

Invasion across host epithelial barriers
Following cellular adherence and colonisation,
GBS can use secreted toxins or employ cell-
surface virulence factors, known as invasins, to
promote bacterial entry and survival within
host cells (Fig. 1). Some of these factors promote
invasion by exploiting the ECM and/or
host cellular signal transduction pathways –
mechanisms that are just beginning to be
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understood in the context of GBS infection.
Ultimately, entry into epithelial cells provides
GBS with an intracellular niche for survival, but
can also result in breakdown of host tissue
integrity and inflammatory activation, both of
which may contribute to disease pathology.
Importantly, infection of placental cells can

promote ascending in utero infection, whereas
invasion of pulmonary epithelium and
endothelium promote systemic dissemination.

Migration of GBS through freshly isolated
chorioamniotic membranes has been
documented by electron microscopy (Ref. 19).
GBS invade primary chorion cells efficiently in

Mechanisms of group B Streptococcus cellular adherence and invasion
Expert Reviews in Molecular Medicine © 2008 Cambridge University Press
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Figure 1. Mechanisms of group B Streptococcus cellular adherence and invasion. Surface-expressed
proteins FbsA/B, ScpB, Srr1, pili, BibA, LTA and ACP mediate group B Streptococcus (GBS) binding to host
cells and ECM components, such as fibrinogen and fibronectin. Secreted b-haemolysin/cytolysin promotes
GBS invasion, possibly by breaking down host barriers to reveal novel receptors on the basement
membrane, such as laminin. GBS also use GAPDH to activate host plasminogen and degrade the ECM.
Intracellular GBS invasion is enhanced by bacterial-dependent cytoskeletal rearrangements triggered by
host PI3K/AKT- and FAK-signalling pathways and the Rho family of GTPases. Alternatively, GBS can also
use an unknown mechanism to cross host epithelial barrier by a paracellular route. Several GBS adhesins,
including FbsB, ScpB, pili, LTA and ACP, also contribute to cellular invasion. Abbreviations: ACP, alpha C
protein; BibA, GBS immunogenic bacterial adhesin; ECM, extracellular matrix; FAK, focal adhesion kinase;
FbsA/B, fibrinogen-binding proteins A and B; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GDP,
guanosine diphosphate; GTP, guanosine triphosphate; Lmb, laminin-binding protein, LTA, lipoteichoic acid;
PI3K, phosphoinositide 3-kinase; ScpB, C5a peptidase; Srr1, serine-rich repeat domain protein 1.
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vitro, and are capable of transcytosing through
intact chorion cell monolayers without
disruption of intracellular junctions (Ref. 20).
GBS also secrete hyaluronate lyase, which is
capable of degrading an important ECM
component that is abundant in placental tissues
(Ref. 21). Intracellular invasion of both alveolar
epithelial and pulmonary endothelial cells by
GBS was first noted in newborn macaques
following intra-amniotic challenge (Ref. 22), and
later confirmed in human tissue culture lines
(Refs 23, 24). Electron microscopy studies
demonstrate that host cytoskeletal changes are
triggered by GBS, which lead to endocytotic
uptake of the bacterium within a membrane-
bound vacuole (Refs 25, 26).

FbsB, the surface-anchored GBS–epithelial-cell
adhesin binds fibrinogen via its N-terminal
domain (Ref. 10), Lmb mediates ECM adherence
(Refs 9, 27) and ScpB interacts with fibronectin
(Ref. 5). Each of these plays a demonstrable role
in promoting efficient epithelial or endothelial
cell invasion. Another GBS surface protein,
Spb1, was identified by subtractive
hybridisation to play a specific role in serotype
III GBS invasion of epithelial cells (Ref. 28). In
addition, the surface-anchored alpha C protein
(ACP) is known to mediate GBS invasion of
human cervical epithelial cells, and ACP
deletion renders GBS less virulent in a neonatal
mouse model of infection (Refs 29, 30). ACP
specifically interacts with host cell
glycosaminoglycan (GAG) on the epithelial cell
surface to promote bacterial internalisation
(Ref. 31). A GBS strain expressing an ACP
variant with a charge-neutralising mutation in
the GAG-binding residue cluster was deficient
in invasion of cervical epithelial cells (Ref. 32).
In a second possible mechanism, one of two N-
terminal ACP domains promotes GBS invasion
by binding a1b1-integrins on the epithelial cell
surface (Ref. 33).

The intracellular uptake of GBS involves
activation of cytoskeletal rearrangements in the
target cell. Rho family GTPases, which are
small, ubiquitous signalling molecules found in
the eukaryotic cytosol, are known to be
manipulated by pathogenic bacteria at the cell
surface to trigger downstream regulation of
actin polymerisation and cytoskeletal
rearrangement (Ref. 34). GBS infection of
epithelial cells increases activated levels of Rho
family members RhoA, Rac1 and Cdc42, and

GBS invasion can be inhibited by dominant-
negative expression of these proteins and by
Rho family GTPase inhibitors (Ref. 35).
Furthermore, Rac1 and integrin-b1 are also
involved in macrophage phagocytosis of GBS
and subsequent phagosome maturation
(Ref. 36). GBS invasion mediated by the ACP
surface protein proceeds in a Rho-GTPase-
dependent manner (Ref. 31). Another host
signal transduction pathway involved in GBS
uptake involves phosphoinositide-3 kinase
(PI3K)/Akt. PI3K is a lipid kinase that catalyses
the recruitment, phosphorylation and activation
of the intracellular effector Akt, which in turn
triggers downstream signalling to modulate
cytoskeletal activities. Akt phosphorylation is
demonstrated in the epithelial cell response to
GBS infection, and chemical inhibition of PI3K
or Akt and genetic inactivation of PI3K results
in reduced GBS invasion (Ref. 37).

Although cellular invasion may play a
principal role in bloodstream penetration in
late-onset GBS infection, extensive lung
epithelial and endothelial destruction may be
evident in severe early-onset cases. Cellular
damage results largely from the actions of the
GBS b-haemolysin/cytolysin, a pore-forming
toxin that lyses lung epithelial and endothelial
cells and compromises their barrier function
(Refs 38, 39). Even at subcytolytic doses, GBS
b-haemolysin/cytolysin promotes lung
epithelial cell invasion and triggers release of
interleukin-8 (IL-8), a principal neutrophil
chemoattractant (Ref. 40). GBS mutants
lacking b-haemolysin/cytolysin expression are
less able to penetrate pulmonary barriers and
produce systemic infection than wild-type
strains in a rabbit model of GBS pneumonia
(Ref. 41). The cytolytic, proinvasive and
proinflammatory effects of the GBS b-
haemolysin/cytolysin are all neutralised by
dipalmotyl phosphatidylcholine (DPPC), the
major phospholipid constituent of lung surfactant
(Ref. 38). This finding may help to explain the
increased risk of premature, surfactant-deficient
neonates to develop severe lung injury and
invasive disease upon GBS infection.

The glycolytic enzyme glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) has been
implicated in virulence of a number of bacterial
pathogens including group A Streptococcus (GAS),
through unanticipated dual functionalities
that include binding and activation of host
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plasminogen (Ref. 42). GAS acquisition of surface
plasmin activity promotes host invasion and
systemic spread (Ref. 43). GBS GAPDH shares
homology with GAS GAPDH and is expressed on
the cell surface. GBS can bind lysine residues of
host plasminogen via GAPDH, activate the
bound proenzyme to plasmin, and thereby gain
the ability to degrade host matrix proteins such as
fibronectin (Ref. 44). Pretreatment of GBS with
plasminogen and exogenous tissue plasminogen
activator enhances virulence in a mouse model
of infection, possibly because of a plasmin-
mediated increase in bacterial invasiveness in
host tissues (Ref. 45).

Finally, in addition to penetration of host cell
barriers by intracellular invasion or direct
damage to cells and extracellular matrix, new
evidence indicates that GBS can cross cell
monolayers via a paracellular route. GBS have
been shown to associate with junctional protein
complexes in electron microscopic studies. In a
TranswellTM model of epithelial cell barrier
function, GBS transcytosis proceeded with
active and transient junction opening without
altering transepithelial electrical resistance
(Ref. 46). The GBS strain expressing a GAG-
binding-deficient ACP variant could not invade
cervical epithelial cells, but could still
accomplish transcytosis, indicating that the two
processes can occur independently (Ref. 32).

Resistance to innate immune
clearance

Once GBS penetrates cellular barriers to reach
the bloodstream or deep tissues, a broader
immunological response is activated to clear the
infection, in which host phagocytic cells
including neutrophils and macrophages play a
critical role. Effective uptake and clearance of
GBS by these cells depends upon opsonisation
by specific antibodies or serum complement,
factors that can be quantitatively and
qualitatively deficient in newborns, especially
those born prematurely. The propensity of GBS
to produce invasive infections further reflects
many virulence factors that allow the bacteria
to resist opsonophagocytosis or neutralise the
bactericidal activities of neutrophils and
macrophages (Fig. 2).

Upon penetration of GBS into the lung tissue
or bloodstream of the newborn infant, an
immunological response is recruited to clear
the microorganism. Central to this response

are host phagocytic cells, including neutrophils
and macrophages. Effective uptake and killing
by neutrophils requires opsonisation of the
bacterium by specific antibodies in the presence
of complement. However, complement
deposition does not affect GBS survival or
uptake by macrophages, probably because GBS
protect themselves by binding factor H, a host
counter-regulator of complement (Ref. 47).
Neonates are particularly prone to invasive
disease because of their quantitative or
qualitative deficiencies in phagocytic cell
function, specific antibody, or the classic and
alternative complement pathways. In addition
to these newborn host susceptibilities, GBS
possess a number of virulence determinants
that seek to thwart each of the key components
of effective opsonophagocytic killing. The
sialylated GBS capsular polysaccharide (CPS)
represents one such defence factors.

Complement is a system of enzymatic reactions
used by the innate immune system to recognise
microbes and coat their surfaces with host
proteins, making them more easily detected
and engulfed by phagocytic cells bearing
complement receptors, while simultaneously
amplifying other aspects of the inflammatory
response. The thick CPS is critical for limiting
the effectiveness of host complement defence.
The serotype-specific epitopes of ten known
GBS CPSs (Ia, Ib, II–VIII and more recently
IX) are created by different arrangements of
four monosaccharides (glucose, galactose,
N-acetylglucosamine and sialic acid) into unique
repeating units, but unfailingly these structures
contain a terminal sialic acid bound to galactose
in an a2! 3 linkage (Refs 48, 49, 50, 51, 52,
53, 54). This sialic acid molecule provides
antiphagocytic protection by impairing surface
deposition of opsonically active complement C3
on the bacterial surface. GBS subjected to
sialidase treatment, or isogenic GBS mutants
lacking capsular sialylation, are more
susceptible to neutrophil killing and are less
virulent in animal models of infection (Refs 55,
56). However, since others have shown that
encapsulated and unencapsulated GBS are
equally susceptible to macrophage uptake, the
role of CPS in resisting phagocytosis per se
versus other aspects of immune cell killing
remains unclear (Ref. 57).

Sialic-acid-dependent reduction in C3
deposition is correlated with diminished

expert reviews
http://www.expertreviews.org/ in molecular medicine

5
Accession information: doi:10.1017/S1462399408000811; Vol. 10; e27; September 2008

&2008 Cambridge University Press

R
ec

en
t

ad
va

nc
es

in
un

d
er

st
an

d
in

g
th

e
m

o
le

cu
la

r
b

as
is

o
f

g
ro

up
B

S
tr

ep
to

co
cc

u
s

vi
ru

le
nc

e



production of C5a, an important complement-
derived chemoattractant (Ref. 58), which works
synergistically with ScpB-mediated proteolytic
inactivation of C5a to reduce host neutrophil
mobilisation. Additionally, a new cell-surface
GBS immunogenic bacterial adhesin (BibA) was
recently determined to mediate inhibition of
other complement components. BibA binds
human C3bp, a component of the classical
complement pathway, promotes resistance to
phagocytic killing, mediates adherence to
epithelial cells and contributes to virulence in a

mouse model of infection (Ref. 59). GBS b-protein
was shown to prevent opsonophagocytosis by
binding short consensus repeats found in the
middle region of factor H, enabling the unbound
active region to block C3b deposition on the
bacterial cell surface (Ref. 60). The beta antigen of
C protein binds human IgA antibody (Ref. 61),
and IgA deposited nonspecifically on the
bacterial surface probably inhibits interactions
with complement. Finally, a cell-surface protease,
CspA, targets host fibrinogen, producing adherent
fibrin-like cleavage products that coat the bacterial

Mechanisms of group B Streptococcus immune evasion
Expert Reviews in Molecular Medicine © 2008 Cambridge University Press
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Figure 2. Mechanisms of group B Streptococcus immune evasion. Group B Streptococcus (GBS) express
several surface-expressed or secreted factors to evade host immune defences and promote survival. The Dlt
operon is responsible for increasing incorporation of D-alanine residues in cell-wall teichoic acids, thereby
reducing electronegativity and affinity for cationic antimicrobial peptides. PBP1a and the pilB subunit of GBS
pili also contribute to antimicrobial peptide resistance. ScpB, the sialic acid capsule, BibA, b protein and
CspA all inhibit host clearance of GBS by interfering with complement components C5a, C3 and C3bp.
SOD properties of the orange carotenoid pigment shield GBS from killing by phagocyte-generated reactive
oxygen species. Alternatively, b-haemolysin/cytolysin can boost GBS survival by cytolytic or proapoptotic
injury to host phagocytes. Abbreviations: BibA, GBS immunogenic bacterial adhesin; CspA, cell-surface
protease A; PBP1a, penicillin-binding protein 1a; ScpB, C5a peptidase; SOD, superoxide dismutase.
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surface and interfere with complement-mediated
opsonophagocytic clearance (Ref. 62).

Once engulfed and contained in the
phagosome, GBS face the rapid release of toxic
reactive oxygen species (ROS) produced in the
oxidative burst. Unlike Staphylococcus aureus,
GBS do not produce catalase, yet are still able to
resist killing by ROS and survive inside
macrophage phagolysosomes (Refs 63, 64, 65).
GBS possess an endogenous source of the
oxygen-metabolite scavenger glutathione
(Ref. 65), and the GBS SodA enzyme can
neutralise superoxide anions (Ref. 66). GBS also
produce an orange carotenoid pigment, a
property unique among haemolytic
streptococci, that is genetically linked to the cyl
operon encoding the b-haemolysin/cytolysin
cytotoxin (Ref. 67). The free-radical scavenging
properties of this carotenoid neutralise
hydrogen peroxide, superoxide, hypochlorite
and singlet oxygen, and thereby provide a
shield against several elements of phagocyte
ROS killing (Ref. 68).

Antimicrobial peptides (AMPs) that exhibit
broad-spectrum activities, such as cathelicidins
and defensins, are produced by many immune
and epithelial cell types. The small, cationic
nature of most AMPs supports the assumption
that their mechanism of killing involves their
electrostatic attraction to negatively charged
microbial cell surfaces, followed by their
assembly to create membrane pores or otherwise
disrupt membrane integrity (Ref. 69). GBS
increase their intrinsic resistance to AMPs by
incorporation of positively charged D-alanine
residues into their cell-wall teichoic acids, thereby
reducing surface electronegativity and affinity
for the cationic peptides (Ref. 70). A surface-
anchored penicillin-binding protein, PBP1a,
enhances GBS resistance to cathelicidins and
defensins, thereby reducing GBS susceptibility to
killing by alveolar macrophages and neutrophils
(Ref. 71), and promoting bacterial survival in a
neonatal rat model of aerosolised lung infection
(Ref. 72). Similarly, expression of the pilus
backbone protein PilB renders GBS more resistant
to killing by cathelicidin AMPs, and is associated
with enhanced phagocyte resistance and systemic
virulence (Ref. 73).

Induction of phagocyte apoptosis, or
programmed cell death, represents an
alternative bacterial defence mechanism to
avoid phagocytic clearance. Apoptosis is a

carefully regulated signal cascade involving a
group of cysteine proteases known as caspases
and several pro- and anti-apoptotic regulators
belonging to the Bcl-2 family. In contrast to
some cell-death ligands, macrophage apoptosis
triggered by GBS requires caspase-3 activation
and utilises unique changes in regulation and
localisation of Bcl-2 family members (Ref. 74).
GBS-induced macrophage apoptosis can also
progress independently of caspases. Here,
calpains, which belong to a different class of
cytosolic cysteine proteases, are recruited to
cleave and activate Bcl-2 family members and
relay the death signal; the dual pathways for
phagocyte destruction increase the chances that
host defences will be circumvented (Ref. 75).
The complete role of GBS b-haemolysin/
cytolysin in the induction of apoptosis and/or
necrotic macrophage cell death remains unclear.
Production of this cytolysin was shown to
enhance GBS survival in mouse and human
blood and this pro-survival phenotype was
linked to its ability to induce cytolysis and
apoptosis of phagocytes (Ref. 68). Furthermore,
growth of GBS in high glucose concentrations,
which minimises b-haemolysin/cytolysin
production, also reduces macrophage apoptosis
(Ref. 76). However, it was also demonstrated
that in vitro macrophage infection with either
wild-type GBS or a GBS mutant lacking
b-haemolysin/cytolysin resulted in similar
levels of viability, indicating that GBS-induced
macrophage apoptosis can also occur by a
b-haemolysin/cytolysin-independent mechanism
regulated, at least in part, by glucose (Ref. 76).

Finally, a new understanding of GBS immune
avoidance by molecular mimicry is emerging.
The conserved GBS terminal a2! 3 linked sialic
acid capsular component is identical to a sugar
epitope widely displayed on the surface of all
mammalian cells. Compared with wild-type
strains, capsule-deficient GBS mutants elicit
greater degrees of proinflammatory cytokine
release from human cells. Like human sialic
acids, GBS capsular sialic acids have been
demonstrated to engage sialic-acid-recognising
immunoglobulin superfamily lectins (Siglecs) on
human leukocytes, a family of cell-surface
receptors with intracellular domains that send
negative signals to limit host cell activation. This
interaction suggests that bacterial surface
sialylation may have evolved to mimic host
‘self’ antigens, allowing GBS to disguise
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themselves from immune detection, manipulate
phagocyte function and dampen the immune
response to GBS infection (Ref. 77).

Inflammatory activation and
the sepsis syndrome

When failures in epithelial barrier function and
immunological clearance allow GBS to establish
bacteraemia in the neonate, development of
septicaemia may ensue. Animal models in
which GBS are infused intravenously
demonstrate a biphasic host inflammatory
response (Ref. 78). The acute phase (,1 hour) is
manifested by increased pulmonary artery
pressure and decreased arterial oxygenation,
and is associated with a rise in serum levels of
thromboxanes. Pulmonary hypertension and
hypoxaemia persist through the late phase (2–4
hours), in which a progressive pattern of
systemic hypotension, decreased cardiac output
and metabolic acidosis develops together with
haematological abnormalities, organ system
dysfunction and an increase in inflammatory
markers, such as thromboxanes, prostacyclins,
tumor necrosis factor-alpha (TNF-a), IL-1 and
IL-6.

IL-1, a known stimulator of cyclo-oxygenase
and lipo-oxygenase pathways, appears to
occupy a proximal position in the deleterious
cytokine cascade of septic shock. Treatment
with an IL-1 receptor antagonist improves
cardiac output and mean arterial pressure and
increases survival in piglets receiving a
continuous infusion of GBS (Ref. 79).
Conversely, the cytokine IL-12, which is
elevated 12–72 hours after challenge in animal
models, has an important role in regulating the
systemic response to GBS infection.
Pretreatment with a monoclonal antibody
against IL-12 results in greater mortality and
intensity of bacteraemia, whereas therapeutic
administration of IL-12 is associated with lower
mortality and bloodstream replication of the
organism (Ref. 80).

Since the release of TNF-a, IL-l and IL-6 are
stimulated by soluble GBS cell-wall antigens
(Ref. 81), studies have sought to identify
the specific GBS component(s) of the cell wall
that trigger the host cytokine cascade. GBS
peptidoglycan is more effective than lipoteichoic
acid or capsular polysaccharide as a stimulator
of cytokine release from monocytes (Ref. 82).
Knockout studies in mice indicate that cell wall

peptidoglycan-induced activation of p38 and
NF-kB depends upon the cytoplasmic Toll-like
receptor (TLR) adaptor protein MyD88, but
does not proceed via the pattern recognition
receptors TLR2 or TLR4 (Ref. 83). GBS
activation of TLR2 was shown to depend on
surface expression of lipoproteins, which also
play a significant role in the development of
GBS sepsis (Ref. 84). Structural differences in
the linkage, anchoring and backbone of GBS
lipoteichoic acid compared with those present
in other Gram-positive bacteria may account for
its diminished immune activation properties
(Ref. 85).

Inhibitor studies have revealed that the
mitogen-activated protein kinase (MAPK)/c-Jun
N-terminal kinase (JNK) signalling pathway
is essential for the NF-kB-dependent
inflammatory response of phagocytes to
GBS. Since phagocytosis and oxidative killing
of GBS were not affected by inhibition of this
pathway, JNK may represent a viable
therapeutic target for GBS sepsis (Ref. 86). The
nitric oxide (NO) pathway has also been
implicated in the overproduction of
proinflammatory cytokines, such as IL-6, and
initiation of cellular injury during GBS infection
of lung tissue (Ref. 87). The GBS cell wall and
b-haemolysin/cytolysin act synergistically to
upregulate inducible nitric oxide synthase
(iNOS) in murine macrophages (Ref. 88). The
inducible cyclo-oxygenase COX2 is also
activated upon GBS infection in human
monocytes, probably through MAPK pathway
signalling (Ref. 89). GBS infection was also
shown to stimulate COX2 and prostaglandin E2
(PGE2) expression in lung tissue in vitro and in
vivo. GBS-induced COX2/PGE2 inflammatory
response was reduced by treatment with an
iNOS inhibitor and restored by addition of a
NO donor, indicating that it is at least partially
regulated by the NO pathway (Ref. 90).

The role of complement in GBS-mediated
inflammation remains controversial. In one
study, whole blood derived from C3 or
complement receptor 3 (CR3/CD11b/CD18)
knockout mice infected with GBS revealed a
tempered TNF-a response (Ref. 91). NO was
also shown to depend on CR3 expression in
macrophages exposed to GBS (Ref. 92).
However, others have shown that macrophages
lacking CR3 demonstrate a normal cytokine
response to GBS infection (Ref. 93).

expert reviews
http://www.expertreviews.org/ in molecular medicine

8
Accession information: doi:10.1017/S1462399408000811; Vol. 10; e27; September 2008

&2008 Cambridge University Press

R
ec

en
t

ad
va

nc
es

in
un

d
er

st
an

d
in

g
th

e
m

o
le

cu
la

r
b

as
is

o
f

g
ro

up
B

S
tr

ep
to

co
cc

u
s

vi
ru

le
nc

e



The proinflammatory effects of the GBS b-
haemolysin/cytolysin also contribute to sepsis
pathophysiology. The toxin acts to stimulate
iNOS and NO release in macrophages (Ref. 88).
In a mouse model of bacteraemia and arthritis,
b-haemolysin/cytolysin expression is associated
with higher mortality, increased bacterial loads,
greater degrees of joint injury and intra-
articular and systemic release of the
proinflammatory cytokines IL-1 and IL-6
(Ref. 94). Challenge of rabbits with isogenic GBS
mutants showed that b-haemolysin/cytolysin
production was associated with significantly
higher degrees of hypotension, increased
mortality and evidence of liver necrosis with
hepatocyte apoptosis (Ref. 95). Partially purified
GBS b-haemolysin/cytolysin preparations
produce significant hypotensive actions when
infused in rats and rabbits, including death due
to shock (Ref. 96). The b-haemolysin/cytolysin
toxin contributes directly to cardiomyocyte
dysfunction and apoptosis, which may augment
its role in the pathophysiological abnormalities
of GBS sepsis (Ref. 97).

GBS blood–brain barrier penetration
and meningitis

The pathophysiology of GBS meningitis varies
according to age of onset. In early-onset
disease, autopsy studies demonstrate little or
no evidence of leptomeningeal inflammation,
despite the presence of abundant bacteria,
vascular thrombosis and parenchymal
haemorrhage (Ref. 98). By contrast, infants with
late-onset disease usually have diffuse purulent
arachnoiditis with prominent involvement of
the base of the brain (Ref. 99). Similar age-
related differences in central nervous system
(CNS) pathology are evident in the infant
rat model of invasive disease (Ref. 100).
These histopathological differences reflect
underdevelopment of the host immunological
response in the immediate neonatal period,
with a higher proportion of deaths resulting
from overwhelming septicaemia.

To produce meningitis, GBS must penetrate the
BBB, a specialised structural and functional
barrier that maintains homeostasis of the CNS.
The BBB consists largely of specialised brain
microvascular endothelial cells (BMECs), which
guard the brain from circulating toxins and
microbes by maintaining tight intercellular
junctions and prohibiting pinocytosis.

Intracellular invasion and transcytosis of
human BMEC tissue culture monolayers has
been shown in vitro, and this model has been
used to probe the potential role(s) of individual
GBS virulence determinants in the initial
pathogenesis of GBS CNS infection.

When a GBS transposon mutant library
was screened for reduced BMEC invasion,
a particularly hypoinvasive mutant was
found to harbour a disruption of a gene (iagA)
that encodes an enzyme for biosynthesis of
diglucosyldiacylglycerol, a membrane glycolipid
that functions as an anchor for lipoteichoic acid.
Deletion of iagA yielded a GBS mutant that
sheds lipoteichoic acid into the medium,
exhibits decreased BMEC invasion in vitro and
is attenuated in a murine model of meningitis
(Ref. 101). In separate avenues of research,
GBS mutants lacking the GBS fibrinogen
receptor FbsA, laminin-binding protein Lmb, or
pilus backbone subunit protein PilB also
demonstrated reduced adherence or invasion of
BMECs in vitro (Refs 17, 27, 102). At high
bacterial densities, human BMEC invasion by
GBS is accompanied by evidence of b-
haemolysin/cytolysin-induced cellular injury
(Ref. 26). Correspondingly, b-hemolysin/
cytolysin-knockout mutants show decreased
BBB penetration and decreased lethality from
meningitis in vivo (Ref. 103).

GBS invasion of human BMECs can be blocked
by inhibition of actin polymerisation, suggesting
that GBS trigger rearrangement of the host
cytoskeleton and induce their own uptake
(Ref. 26). This process may be accomplished, at
least in part, by tyrosine phosphorylation of
focal adhesion kinase (FAK), which occurs
upon GBS infection. Phosphorylation of FAK
induces its association with PI3K and paxillin,
an actin filament adaptor protein (Ref. 104), and
is required for efficient GBS BMEC invasion.
GBS-infected BMECs also exhibit increased
levels of activated Rho family members RhoA
and Rac1. Rho family GTPase inhibitors and
dominant-negative expression of RhoA and
Rac1 are effective in blocking GBS BMEC
invasion (Ref. 105).

The host inflammatory response to GBS
contributes significantly to the pathogenesis of
meningitis and CNS injury. The initiation of the
inflammatory response is triggered through the
sentinel function of the BBB endothelium,
which activates a specific pattern of gene
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transcription for neutrophil recruitment,
including production of chemokines (e.g. IL-8,
Groa), endothelial receptors (intracellular cell-
adhesion molecule 1, ICAM-1) and neutrophil
activators (GM-CSF) (Ref. 103). A vascular
distribution of cortical lesions in neonatal rats
with GBS meningitis indicates that disturbances
of cerebral blood flow contribute to neuronal
damage (Ref. 106). Inflammation of individual
brain vessels can lead to focal lesions, whereas
diffuse alterations of cerebral blood flow could
cause generalised hypoxic/ischaemic injury
and cerebral oedema (Refs 106, 107). In porcine
BMECs, iNOS production is upregulated in
response to GBS infection in a NF-kB-
dependent manner (Ref. 108). Further arteriolar
dysfunction is associated with the presence of
oxygen free radicals thought to be a byproduct
of infiltrating neutrophils (Ref. 109). GBS b-
haemolysin/cytolysin induces IL-8 and the
neutrophil receptor ICAM-1, thereby promoting
neutrophil migration across polar BMEC
monolayers, suggesting that the toxin is crucial
to this particular manifestation of GBS CNS
disease (Ref. 103).

In the neonatal rat model of meningitis, TNF-a
production by astrocytes, microglia and
infiltrating leukocytes appears to contribute to
apoptosis of hippocampal neurons (Ref. 110)
and further increases in BBB permeability
(Ref. 111). GBS signal through TLR2 to activate
and stimulate NO production by microglia
cells, resulting in neuronal destruction
(Ref. 112). Microglial apoptosis is triggered by
GBS cell death via the cysteine protease
caspase-8, and is hypothesised to represent a
self-dampening mechanism that prevents over-
stimulation of CNS inflammation (Ref. 113).
Intraventricular inoculation of newborn piglets
with GBS results in an early sharp rise in
cerebrospinal fluid TNF-a levels, followed
shortly by prostaglandin release and
subarachnoid inflammation (Ref. 114). In the
neonatal rat, simultaneous intracisternal
administration of dexamethasone with GBS
challenge markedly reduces the magnitude of
subarachnoid inflammation, vasculopathy, and
neuronal injury (Ref. 106).

Clinical applications for vaccine
development

An effective vaccine against GBS would represent
a major public health advance for newborn

infants and other high-risk populations.
Purified GBS capsular polysaccharide antigens
modelled on the effective campaigns for
Haemophilus influenzae type B (HiB) and
pneumococcal vaccination in childhood have
been coupled to an immunogenic protein
carrier. Such glycoconjugate vaccines against
serotypes Ia, Ib and II–VIII GBS have been
synthesised and found to be immunogenic in
preclinical trails in mice, rabbits and/or
baboons. Several of these have advanced to
Phase I and Phase II clinical trails in healthy
adults with an excellent safety profile (Refs 115,
116, 117). Immunised humans develop
serotype-specific anti-CPS antibodies that
function well to promote GBS killing during in
vitro opsonophagocytic assays. The recent
discovery of frequent O-acetyl modifications of
the immunodominant terminal a2! a3-linked
sialic acid moiety on several GBS serotypes may
provide important insight for optimising CPS
purification to retain native structure and
maximum immunogenicity (Ref. 118). One
challenge faced by the glycoconjugate approach
is to develop combination products that would
provide appropriately broad-spectrum antigenic
coverage for the diverse GBS serotypes
associated with disease in any particular
demographic group or geographic area.

The investigation of candidate surface-
expressed protein antigens distributed more
broadly (or ideally universally) among strains
of different GBS serotypes has intensified in
recent years (Ref. 1). The C5a peptidase ScpB
is universally expressed by GBS strains capable
of eliciting protective IgG antibodies, and may
be deliverable in recombinant form within a
biodegradable polymer (Refs 7, 119). Similarly,
surface proteins LrrB and Sip are highly
conserved across GBS strains of diverse
serotypes and each induces protective
immunity in mice (Refs 12, 120). The
component proteins of newly discovered GBS
pili may also represent candidates for a
universal vaccine antigen and have been
explored as classical antigens and
recombinantly expressed in Lactococcus lactis as
a live-attenuated vaccine (Refs 13, 121).
Although universal protein vaccine antigens
may overcome some limitations associated
with capsule-based vaccines, introduction of
any vaccine during pregnancy (one model for
GBS prevention) will meet a concerned and
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apprehensive target population and will no doubt
demand a variety of intensive risk assessment and
educational interventions (Ref. 122).

Research in progress and outstanding
research questions

Each new year of GBS research heralds the
discovery of novel virulence determinants or new
functions for previously identified surface
proteins or secreted factors. Advances can be
attributed to the application of new
methodologies, such as the use of reverse
vaccinology to screen genomes for immunogenic
surface antigens, which led to the identification
multifunctional immunogenic adhesin BibA and
unveiled the surface pili that had been overlooked
for more than 50 years of GBS research (Refs 13,
59). Functional screening and careful re-
examination of previously identified surface
structures have also revealed secondary functions,
such as a role for the GBS C5a peptidase ScpB in
epithelial adherence or capsular sialic acid in
engagement of host Siglec receptors. Furthermore,
it is likely that GBS will remain a useful
model organism for Gram-positive bacterial
pathogenesis and for probing the developmental
regulation of newborn immune function.

Rising incidences of invasive disease in adults
and emerging patterns of antibiotic resistance
(Ref. 123) indicate that further attention must be
paid to elucidate GBS virulence factors and the
mechanisms by which they interact with host
cells and our immune system. Indeed, the
emergence of GBS strains with decreased
susceptibility to b-lactam antibiotics has now
been reported in both the USA and Japan
(Refs 124, 125). These GBS isolates harbour
mutations in penicillin-binding protein 2x
(PBP2x), which is similar to the first-step
mutations on the pathway to full b-lactam
resistance seen in pneumococcal isolates a few
decades ago. Enhanced understanding of the
molecular basis of GBS pathogenesis
may pinpoint novel bacterial and host
molecules that can represent novel therapeutic
or immunoprophylactic targets against disease
caused by this foremost of neonatal pathogens.
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Further reading, resources and contacts

Websites
Clinical information on GBS infection can be found at the following websites:

Centers for Disease Control (USA):

http://www.cdc.gov/groupbstrep/

eMedicine:

http://www.emedicine.com/Med/topic2185.htm

Group B Strep Support (UK):

http://www.gbss.org.uk/

Group B Strep Association (USA):

http://www.groupbstrep.org/

Features associated with this article

Figures
Figure 1. Mechanisms of group B Streptococcus cellular adherence and invasion.
Figure 2. Mechanisms of group B Streptococcus immune evasion.
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