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INTRODUCTION

Streptococcus iniae infection is a threat to the pro-
ductivity of intensive finfish aquaculture operations
worldwide, with annual economic losses measured in
the hundreds of millions of dollars. Originally isolated
from the freshwater dolphin Inia geoffrensis (Pier &
Madin 1976), S. iniae infects a wide range of fish spe-
cies such as tilapia (Press et al. 1998), yellowtail (Kitao
1982), trout (Eldar & Ghittino 1999), and hybrid striped
bass (Evans et al. 2000). Clinical symptoms of S. iniae
infection in fish include loss of orientation, lethargy,
anorexia, ulcers, exophthalmia, and erratic swimming
(Bercovier et al. 1997). Mortality is often attributed to a
severe meningoencephalitis (Bercovier et al. 1997).
In rare cases, S. iniae causes infection in humans who

have handled diseased fish (Weinstein et al. 1997).
Despite the need for novel approaches to treatments
and prevention, phosphoglucomutase (Buchanan et al.
2005) and capsular polysaccharide (Miller & Neely
2005, Locke et al. 2007) are the only 2 S. iniae viru-
lence factors characterized to date in the context of fish
pathogenesis.

A characteristic helpful in identifying Streptococcus
iniae in the clinical laboratory is β-hemolysis, a zone of
clearing surrounding colonies grown on blood agar
media. With this phenotype, S. iniae resembles the
leading human pathogen S. pyogenes, the agent of
‘strep throat’ and a wide variety of other mucosal or
deep tissue infections (Carapetis et al. 2005). The pri-
mary factor responsible for β-hemolysis in S. pyogenes
is streptolysin S (SLS), a small, pore-forming cytotoxin
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with a broad range of membrane targets (Alouf & Lori-
dan 1988, Nizet 2002, Wessels 2005). In addition to
SLS, the unrelated, oxygen-sensitive S. pyogenes
hemolysin, streptolysin O, plays a role in β-hemolysis
under anaerobic conditions (Alouf 1980). SLS bio-
synthesis in S. pyogenes is achieved by the products of
the 9-gene sag (streptolysin-associated genes) operon
(sagA-I), with sequence characteristics that place the
molecule in the family of bacteriocin-like small peptide
toxins (Nizet et al. 2000). The 53 amino acid sagA gene
encodes the putative SLS prepropeptide precursor,
while the downstream genes have proposed roles in
toxin processing, export, or immunity (Nizet et al.
2000). Recently, precise, in-frame allelic replacement
mutagenesis of the structural gene sagA encoding the
SLS prepropeptide was used to definitively establish
the role of SLS production in the pathogenesis of inva-
sive S. pyogenes disease using a mouse skin infection
model (Datta et al. 2005), thereby corroborating earlier
observations using non-hemolytic S. pyogenes variants
identified through transposon mutagenesis (Betschel
et al. 1998). 

Recently, genes responsible for the β-hemolytic
phenotype of Streptococcus iniae have been mapped
to a genetic locus closely resembling the 9-gene sag
operon of S. pyogenes, leading to the conclusion that S.
iniae produces an SLS homolog (Fuller et al. 2002). The
candidate S. iniae SagA prepropeptide is 54 amino
acids in length, and overall sequence similarity across
all predicted protein products (SagA-I) of the 2 operons
is 73% (Fuller et al. 2002). In this study, we examined
the contribution of SLS production to S. iniae virulence
in fish, coupling precise, in-frame allelic replacement
of the sagA gene and direct comparisons of the wild-
type (WT) S. iniae parent strain and isogenic SLS-
deficient mutant using in vitro and in vivo models of
disease pathogenesis.

MATERIALS AND METHODS

Bacteria strains, culture, transformation, and DNA
techniques. Streptococcus iniae strain K288 was iso-
lated from the brain of a diseased hybrid striped bass
Morone chrysops × M. saxatilis (HSB) at the Kent
SeaTech aquaculture facility in Mecca, California
(Buchanan et al. 2005). Unless otherwise stated, all S.
iniae (S. pyogenes) strains were grown at 30°C (37°C)
in Todd-Hewitt broth (THB, Hardy Diagnostics) or
agar (THA). Enumeration of colony-forming units
(CFU) for in vitro assays and in vivo infections was per-
formed by serially diluting bacteria in phosphate-
buffered saline (PBS) and plating on THA. β-hemolytic
activity was assessed on sheep blood agar (SBA) plates
(tryptic soy agar with 5% sheep red blood cells). For all

assays, overnight cultures of S. iniae were diluted 1:10
in fresh THB and grown to mid-log phase (optical den-
sity, OD600 = 0.40). S. iniae strains were rendered elec-
trocompetent for transformation through growth in
THB media containing 0.6% glycine following proce-
dures described for S. agalactiae (GBS) (Framson et al.
1997); transformants were propagated at 30°C in THB
with 0.25 M sucrose. Antibiotic selection was achieved
with chloramphenicol (Cm) at 4 µg ml–1 or ery-
thromycin (Erm) at 5 µg ml–1. Escherichia coli used in
cloning were grown at 37°C (unless otherwise stated)
while being shaken under aerobic conditions in Luria-
Bertani broth (LB, Hardy Diagnostics) or statically on
agar (LA). When necessary, E. coli were grown in
antibiotics: ampicillin (Amp) at 100 µg ml–1, spectino-
mycin (Spec) at 100 µg ml–1, Erm at 500 µg ml–1, or Cm
at 20 µg ml–1. Mach 1 chemically competent E. coli
(Invitrogen) and electrocompetent MC1061 E. coli
used in transformations were recovered through
growth at 30°C in SOC media (Invitrogen). A PureLink
Quick Plasmid Miniprep Kit (Invitrogen) was used to
isolate plasmids propagated in E. coli. S. iniae genomic
DNA was isolated using the UltraClean DNA Isolation
Kit (MoBio). 

Cell lines and culture conditions. The adherent carp
leukocyte culture (CLC) carp monocytic/macrophage
cell line (European Collection of Cell Cultures no.
95070628) and the WBE27 white bass embryonic ep-
ithelial cell line (American Type Culture Collection no.
CRL-2773; Shimizu et al. 2003) were grown at 28°C
with 5% CO2. Cells were maintained in 125 ml tissue
culture flasks in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco) containing 10% heat-inactivated fetal
bovine serum (FBS, Gibco).

Allelic exchange mutagenesis. Allelic exchange
mutagenesis (see Fig. 1) of Streptococcus iniae strain
K288 was carried out as previously described
(Buchanan et al. 2006) with the only significant modifi-
cation being the incorporation of the Gateway cloning
system (Invitrogen). PCR was used to amplify ~400 bp
of S. iniae chromosomal DNA fragments directly
upstream and downstream of sagA (GenBank acces-
sion no. AF465842), with primers adjacent to sagA con-
structed to possess 25 bp 5’-extensions corresponding
to the 5’- and 3’- ends of the chloramphenicol acetyl-
transferase (cat) gene from pACYC (Nakano et al.
1995), respectively. The upstream (Up) and down-
stream (Down) PCR products were then combined with
a 660 bp amplicon of the complete cat gene using
fusion PCR (Wang et al. 2002). The resultant PCR
amplicon containing an in-frame substitution of sagA
with cat was subcloned into the Gateway entry vector
pCR 8/GW/TOPO (Invitrogen) and transformed into
Mach1 Escherichia coli (Invitrogen). Plasmid DNA was
extracted and a Gateway LR recombination reaction
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performed to transfer the fusion PCR amplicon into the
corresponding Gateway entry site of a temperature-
sensitive knockout vector pKODestErm (a derivative of
pHY304 [Chaffin et al. 2000] created for Gateway
cloning), thereby generating the knockout plasmid
pKOsagA. The pKOsagA construct was introduced
into WT S. iniae by electroporation; transformants
were identified at 30°C by Erm selection and then
shifted to the nonpermissive temperature for plasmid
replication (37°C). Differential antibiotic selection
(CmR and ErmS) was used to identify candidate allelic
exchange mutants. Targeted in-frame replacement of
sagA was confirmed unambiguously by PCR reactions
documenting the desired insertion of cat and absence
of sagA sequence in chromosomal DNA isolated from
the final isogenic mutant, K288ΔsagA. 

Complementation studies. PCR was used to ampli-
fy the sagA gene and ~200 bp of upstream sequence
containing its predicted promoter and ribosomal
binding site from Streptococcus iniae strain K288.
The amplicon was cloned into pCR8/GW/TOPO as
described above. A Gateway LR recombination reac-
tion was used to transfer the PCR insert from the
entry vector into the Gram-positive expression plas-
mid, pDCerm (Jeng et al. 2003), modified to contain
Gateway recombination sites (pDESTerm), thus creat-
ing complementation vector psagA. The plasmid was
successfully transformed into the ΔsagA S. iniae and
ΔsagA S. pyogenes (Datta et al. 2005) mutant strains
as confirmed by PCR mapping and antibiotic resis-
tance profiles.

Growth rate. Mid-log phase cultures of WT Strepto-
coccus iniae and the isogenic ΔsagA mutant were diluted
1:10 in a 96-well plate. Growth was monitored spec-
trophotometrically at 600 nm every 30 min for 5.5 h.

Invasion and adherence assays. Invasion and
adherence assays were performed in collagenized 96-
well tissue culture plates (Costar) using confluent
monolayers of WBE27 white bass epithelial cells. Bac-
teria in DMEM containing 2% FBS were added to
each well to achieve a multiplicity of infection (MOI)
of 10 (bacteria:cells). Following centrifugation at 350 ×
g for 5 min, the plate was incubated for 60 min at
28°C with 5% CO2. The cells were then washed twice
with DMEM containing 2% FBS and incubated in
fresh DMEM with 20 µg ml–1 penicillin (Invitrogen)
and 200 µg ml–1 gentamicin (Invitrogen) for 60 min to
kill extracellular bacteria. Cells were then washed
twice with DMEM containing 2% FBS and lysed by
trituration in 100 µl of 0.01% Triton X-100 (Sigma).
Surviving intracellular bacteria were quantified by
plating serial dilutions of lysed cell supernatant on
THA. Adherence assays were carried out in a similar
manner except that no antibiotics were used, and the
bacteria were added to the cells for 30 min and

washed 5 times with DMEM containing 2% FBS to
remove non-adherent bacteria prior to enumeration of
CFU. The optimal MOI for all culture-based assays
was experimentally determined.

Macrophage killing assay. Monolayers of carp
macrophages (CLC) were grown as described for the
invasion and adherence assays. Bacteria were diluted
in DMEM containing 2% FBS, added to the cells at an
MOI of 0.01, and incubated at 28°C for 1, 7, or 20 h.
Cells were lysed and plated as described above for
invasion and adherence assays. Percent survival was
calculated based on the initial inoculum. 

Whole blood survival. Blood was extracted via a
syringe from the caudal vein of 3 HSB and collected in
a heparinized tube. Three hundred µl of each blood
sample were immediately added to 2 ml siliconized
microcentrifuge tubes with ~300 CFU Streptococcus
iniae suspended in 100 µl PBS. Tubes were incubated
with shaking at 30°C for 1 h. Two 100 µl aliquots from
each blood sample were spread onto THA to enumer-
ate surviving bacteria. Survival was calculated as a
percentage of remaining bacteria relative to the start-
ing inoculum. 

Cytotoxicity assays. Collagenized 96-well tissue cul-
ture plates (Costar) were seeded with 1 × 105 WBE27 or
CLC cells in 200 µl RPMI (Gibco) with 2% FBS and
bacteria added at an MOI of 100. Plates were spun at
350 × g for 5 min to ensure bacteria/cell contact. Plates
were incubated at 28°C for 5 h before analysis. One µl
of a 1:10 000 dilution of SYTOX Orange (Invitrogen)
was added to each well. Cells were observed with a
Zeiss Axiovert 40 inverted microscope under bright
field conditions and through fluorescence microscopy
using a standard rhodamine filter set at 400× magni-
fication. This experiment was repeated 3 times with
identical results.

Total blood cell hemolysis. Fresh, heparinized,
whole HSB blood was washed 3 times in 20 volumes of
PBS and resuspended as a 2% solution (v/v). In a 96-
well round bottom plate, a mid-log culture of WT
Streptococcus iniae and the ΔsagA mutant were
aliquoted in quadruplicate in volumes of 100 µl. Each
well then received 100 µl of the 2% fish blood solution.
Background lysis was measured in wells containing
only blood cells and THB. Complete lysis was mea-
sured by wells containing blood cells, plain THB, and
2 µl of Triton X-100. Plates were incubated at 30°C for
2 h and then at 4°C for 2 h. Following centrifugation at
1500 × g for 5 min, 100 µl from each well were added
to a new flat-bottom 96-well plate, and the optical
density was read at 405 nm in a microplate reader
(Molecular Devices).

Dose-response challenge. Comparative in vivo viru-
lence analysis of WT Streptococcus iniae and the
ΔsagA mutant was performed using an infection chal-
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lenge of juvenile (~27 g) HSB. Fish were maintained
at 25°C in ~75 l flow-through tanks. Overnight cultures
of each strain were diluted 1:10 and grown to mid-
log phase. Bacteria were pelleted, resuspended, and
diluted in PBS to the desired dose in a 100 µl injection
volume. Groups of 20 fish were injected intraperi-
toneally (IP) with either PBS alone (control), 3 ×
105 CFU of WT S. iniae, or a series of doses of the
ΔsagA mutant ranging from 3 × 105 to 3 × 108 CFU. Sur-
vival was monitored for 10 d. All fish challenges were
carried out in an Association for Assesment and
Accreditation of Laboratory Animal Care (ALAAC)
certified facility following Institutional Animal Care
and Use Committee (IACUC) approved protocols.

Characterization of in vivo fish infection. The infec-
tious process of WT Streptococcus iniae and the ΔsagA
mutant was characterized through in vivo challenge in
HSB. Bacterial suspensions were prepared as described
above. Groups of 30 fish were injected IP with 3 ×
105 CFU or PBS for controls. At 0.25, 1, 2, 3, 4, 5, and 9 d,
4 fish from each group were sampled for presence of
bacteria in the blood, spleen, and brain (no remaining
WT-infected fish were available to sample on Day 9).
Samples were stored briefly on ice, weighed in micro-
centrifuge tubes, and resuspended with a 5-fold quan-
tity of PBS (v/w). Spleen and brain tissue
were manually homogenized, diluted in
PBS, and plated on THA. Blood CFUs
were measured by plating dilutions from
an initial 1:10 dilution of whole blood in
PBS. Bacterial colonies from each CFU
plating sample were streaked onto SBA
to confirm corresponding hemolytic or
non-hemolytic phenotypes. Sagittal
brain tissue samples were taken from 3
fish in each treatment group at 3 and 4 d
post challenge. Samples were placed in
cassettes and preserved in 10% buffered
formalin for histological analysis. Cas-
settes were embedded in paraffin, sec-
tioned, and stained with hematoxylin and
eosin (H&E). 

Statistical analyses. Data analyses
were performed using the statistical
tools included with GraphPad Prism
(GraphPad Software). In vitro assay data
were analyzed using unpaired 2-tailed
t-tests. Fish infection survival data were
analyzed using a Logrank Test. Fish tis-
sue and blood CFU data were log-nor-
malized prior to statistical analyses. A
value of p < 0.05 was considered statisti-
cally significant. In vitro assays were
repeated 3 times with equivalent re-
sults, in quadruplicate, and data pre-

sented (mean ± standard error of the mean, SEM) are
from a single representative assay.

RESULTS

Allelic replacement and complementation of Strepto-
coccus iniae sagA 

We were successful in generating an in-frame allelic
replacement of sagA with the cat gene in the Strepto-
coccus iniae chromosome (Fig. 1). Colonies of the S.
iniae ΔsagA mutant were non-hemolytic on SBA, con-
firming the requirement for sagA in S. iniae SLS pro-
duction (Fig. 2A). Complementation of the ΔsagA
mutant with the S. iniae sagA gene in trans on the plas-
mid psagA restored the hemolytic phenotype on SBA
(Fig. 2A), excluding polar effects on downstream genes
in the SLS biosynthetic operon. Heterologous expres-
sion of the S. iniae sagA gene also restored hemolytic
function to an S. pyogenes ΔsagA allelic exchange
mutant (Datta et al. 2005), demonstrating the func-
tional homology of the SagA toxins from the fish and
human pathogens. The sagA deletion mutation did not
negatively impact the S. iniae growth profile (Fig. 2B).
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SLS does not contribute to Streptococcus iniae
epithelial cell invasion or adherence

The ability of streptococcal pathogens to adhere to
and invade epithelial cell barriers is felt to play an
important role in the development of invasive infection
(Molinari & Chatwall 1999). For example, host cellular
invasion is promoted by the activities of the β-hemo-
lysin of Streptococcus agalactiae (Doran et al. 2002)
and pneumolysin of S. pneumoniae (Cockeran et al.
2002); however, SLS did not serve a similar function in
S. pyogenes (Datta et al. 2005). We used the epithelial
white bass cell line WBE27 to compare the cellular
adherence and invasion of WT S. iniae and the iso-
genic ΔsagA mutant, and found no significant differ-
ences (p = 0.6347, 0.1323; Fig. 3A). Thus, SLS expres-
sion by S. iniae does not appear to itself promote host
epithelial cells interactions in this in vitro model
system.

SLS does not promote Streptococcus iniae phagocyte
resistance

SLS of Streptococcus pyogenes contributes to bacte-
rial survival in freshly isolated human whole blood,
presumably through interference with the function of
circulating phagocytic cells such as neutrophils (Datta
et al. 2005). However, upon comparison of WT and
ΔsagA S. iniae survival in freshly isolated blood from
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HSB, no significant differences were observed within
1 h (p = 0.3808; Fig. 3B). The S. agalactiae β-hemolysin
promotes bacterial survival in murine macrophages
(Liu et al. 2004). Yet, assessment of WT and ΔsagA S.
iniae survival in a fish CLC monocyte/macrophage
killing assay again revealed no differences through a
series of different incubation time points (Fig. 3C).
Thus, SLS expression by S. iniae is likely not a major
contributor to the pathogen’s ability to resist phago-
cyte-mediated clearance.

SLS production promotes Streptococcus iniae fish
cell cytotoxicity

SLS of Streptococcus pyogenes is one of the most
potent known cytotoxins, with broad spectrum activ-

ity against a wide variety of mammalian cell mem-
branes (Alouf & Loridan 1988, Nizet 2002, Wessels
2005). To assess the cytolytic potential of S. iniae SLS
in the context of fish infection, we incubated the WT
and ΔsagA mutant with cultured white bass epithelial
cells (WBE27) or carp macrophages (CLC) for 5 h and
then measured cell viability by a fluorescent assay. In
both cases, a striking decrease in the number of non-
viable cells was observed in wells treated with the
SLS-deficient S. iniae mutant (Fig. 4A). Extending
these studies, the hemolytic activity of S. iniae was
assessed in freshly isolated HSB blood. The S. iniae
ΔsagA mutant showed little hemolytic activity above
background whereas the WT parent strain was capa-
ble of lysing a majority of the cells (Fig. 4B). These
results indicate that SLS is a major contributor to the
cytotoxic activity of S. iniae against a variety of fish-
derived cell types.

SLS expression contributes to Streptococcus iniae
virulence in fish

An HSB challenge model was used to test the
requirement of SLS expression in Streptococcus iniae
pathogenicity. Intraperitoneal injection of 3 × 105 CFU
produced 80% fish mortality by Day 6 (Fig. 5). In con-
trast, the ΔsagA mutant S. iniae was markedly attenu-
ated for virulence, producing no deaths at the equiva-
lent challenge dose nor a 10-fold higher dose, and
only 5 or 10% mortality at challenge doses 100-fold
and 1000-fold higher, respectively (Fig. 5). To further
characterize the aborted infectious process associated
with loss of SLS, bacterial counts were measured in
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the blood, spleen, and brain of HSB at various time
points after challenge with the WT strain or ΔsagA
mutant. All recovered bacteria were plated on SBA to
confirm their identity as S. iniae with the expected
presence or absence of SLS expression. Whereas CFU
counts for both strains were similar in all 3 HSB tis-
sues for the first 48 h after challenge, levels of the
ΔsagA mutant began to decrease in subsequent days
whereas those of the WT remained at high levels (Fig.
6). Curiously, while the ΔsagA mutant was cleared
completely from the blood by Day 5 and from the
spleen by Day 9 after infection, 2 out of 4 HSB
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infected with the ΔsagA mutant still harbored high
levels of bacteria in the brain 9 d after infection
(>106 CFU g–1), yet exhibited no mortality nor clinical
signs of meningoencephalitis (i.e. lethargy, exoph-
thalmia, loss of orientation) throughout the 10 d chal-
lenge period. Histological analysis of brain sections
from WT- and ΔsagA mutant-infected fish on Days 3
and 4 post challenge showed comparable levels of a
mixed inflammatory cell infiltrate on the meningeal
surface; however, dilation of cerebral vessels with foci
of thrombosis were present in the WT-challenged ani-
mals but absent in those infected with the SLS-defi-
cient mutant (Fig. 7).

DISCUSSION

Molecular genetic methods have only recently been
applied to explore the potential virulence mechanisms
by which the leading aquaculture pathogen Strepto-
coccus iniae produces systemic infection in aquacul-
tured fish. Similar to other important streptococcal
pathogens of humans (e.g. S. pyogenes, S. agalactiae)
or animals (e.g. S. suis, S. equi), S. iniae exhibits a β-
hemolytic phenotype on blood agar, indicating the
elaboration of one or more membrane-disrupting tox-
ins. Recently, the S. iniae β-hemolysin was identified as
a homolog of the S. pyogenes toxin SLS (Fuller et al.
2002). Here we applied allelic replacement mutagene-
sis of the toxin-encoding gene sagA to establish that
SLS expression plays a key role in the pathogenesis of
S. iniae fish infection.

The loss of SLS production produced a profound
overall attenuation in the virulence potential of Strep-
tococcus iniae in the HSB infection model (only 10%
mortality at a challenge dose 1000-fold higher than the
80% lethal dose for the WT strain). Based on the exist-
ing literature regarding the action of streptococcal
pore-forming toxins during infection, we explored 3
general categories by which the S. iniae SLS toxin
could harm the fish: promoting cellular adherence and
invasion, increasing resistance to phagocytic killing,
and/or producing direct cytolytic injury to cell and tis-
sues. Direct comparison of WT and ΔsagA mutant S.
iniae using our in vitro fish cell model systems suggest
that the latter activity may be the most significant, as
SLS expression contributes directly to the cell death of
fresh blood cells as well as cultured fish macrophages
and epithelial cells.

In producing systemic infection of multiple organs
including the central nervous system (CNS), patho-
genic streptococci reveal a capacity to penetrate epi-
thelial and/or endothelial barriers (Molinari & Chhat-
wal 1999) and to resist rapid phagocytic clearance
(Voyich et al. 2004). We found that Streptococcus iniae

was able to efficiently adhere to and invade monolay-
ers of the cultured fish epithelial cell line WBE27, but
that SLS expression was not required for this pheno-
type. Similarly, the ability of S. iniae to survive killing
in fresh HSB blood or by CLC macrophages was not
influenced by SLS expression. This is in contrast to
findings for SLS-deficient S. pyogenes survival in
whole human blood (Datta et al. 2005). These in vitro
observations appeared to correlate with findings in the
early stages (first 48 h) of infection in vivo, as the S.
iniae ΔsagA mutant established similar levels of bac-
teremia and penetrated the blood-brain barrier to
access brain tissues to an equivalent degree as the par-
ent strain.

Streptococcus iniae disease in HSB and tilapia repre-
sents a systemic septicemia with bacterial cocci evident
in the plasma, circulating phagocytes, and most organs
including the spleen, kidneys, and prominently, the
CNS (Evans et al. 2000, McNulty et al. 2003). Acute
mortality associated with WT infection was eliminated
by deletion of SLS, although significant numbers of the
ΔsagA mutant persisted in the brain for several days.
Brain sections from both WT and the ΔsagA mutant
showed a mixed inflammatory infiltrate on the
meningeal surface. However, dilation of brain vessels
with thrombus formation seen with WT infection was
absent in the fish infected with the mutant strain, sug-
gesting that SLS expression may promote cerebrovas-
cular endothelial injury or dysfunction. The pore-form-
ing β-hemolysins of S. agalactiae and S. suis, CNS
pathogens of humans and pigs, respectively, both con-
tribute to injury of cerebrovascular endothelial cells
(Nizet et al. 1997, Vanier et al. 2004).

In sum, we found that the β-hemolysin SLS, used
commonly as a phenotypic tool in the clinical micro-
biologic diagnosis of Streptococcus iniae infection, is
also a critical factor in disease pathogenesis. Direct
cytotoxicity against fish cells is likely a major factor
underlying the virulence role of the S. iniae SLS
toxin. However, the RNA encoding the SagA pre-
propeptide for the SLS toxin in S. pyogenes has fur-
ther been implicated in the pre- and post-transla-
tional regulation of other virulence factors of the
human pathogen (Li et al. 1999, Mangold et al. 2004).
In the future, when additional genetically encoded
virulence phenotypes are demonstrated for S. iniae,
our isogenic allelic replacement mutant may be use-
ful for parallel explorations of global gene regulation
functions. As S. iniae infection remains a significant
threat to the economic viability of intensive aquacul-
ture operations worldwide, a more comprehensive
understanding of the specific virulence factors
required for S. iniae pathogenesis, including SLS, can
point to new targets for anti-infective therapy or vac-
cine development.
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