Statins Enhance Formation of Phagocyte Extracellular Traps

Ohn A. Chow,1,2,3,10 Maren von Köckritz-Blickwede,1,10 A. Taylor Bright,3 Mary E. Hensler,1 Annelies S. Zinkernagel,1 Anna L. Cogen,4 Richard L. Gallo,1,4,6 Marc Monestier,7 Yanming Wang,8 Christopher K. Glass,2,3,4,* and Victor Nizet1,5,9,*

1Department of Pediatrics
2Department of Cellular and Molecular Medicine
3Biomedical Sciences Graduate Program
4Department of Medicine
5Skaggs School of Pharmacy and Pharmaceutical Sciences
6University of California, San Diego, La Jolla, CA 92093, USA
7Department of Microbiology and Immunology and Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
8Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
9Rady Children’s Hospital, San Diego, CA 92123, USA
10These authors contributed equally to this work
*Correspondence: ckg@ucsd.edu (C.K.G.), vnizet@ucsd.edu (V.N.)

DOI 10.1016/j.chom.2010.10.005

SUMMARY
Statins are inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent clinico-epidemiologic studies correlate patients receiving statin therapy with having reduced mortality associated with severe bacterial infection. Investigating the effect of statins on the innate immune capacity of phagocytic cells against the human pathogen Staphylococcus aureus, we uncovered a beneficial effect of statins on bacterial clearance by phagocytes, although, paradoxically, both phagocytosis and oxidative burst were inhibited. Probing instead for an extracellular mechanism of killing, we found that statins boosted the production of antibacterial DNA-based extracellular traps (ETs) by human and murine neutrophils and also monocytes/macrophages. The effect of statins to induce phagocyte ETs was linked to sterol pathway inhibition. We conclude that a drug therapy taken chronically by millions alters the functional behavior of phagocytic cells, which could have ramifications for susceptibility and response to bacterial infections in these patients.

INTRODUCTION
Statins are inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol biosynthesis. The mainstay of current hyperlipidemia treatment, an estimated 30 million individuals were prescribed statins in 2005 in the U.S. alone (Stagnitti, 2008). The prevalence of statin usage has stimulated great interest in identifying and understanding significant biological effects of these drugs beyond cholesterol lowering (Merx and Weber, 2008). One remarkable observation to emerge from several clinico-epidemiological studies is that patients receiving statin therapy may experience reduced infection-associated mortality due to pneumonia (Thomsen et al., 2008), bacteremia (Kruger et al., 2006; Liappis et al., 2001), or sepsis (Almog et al., 2007; Kopterides and Falagas, 2009; Martin et al., 2007). Consistent with this finding, statin therapy improved survival in mouse sepsis models, including lipopolysaccharide (LPS) administration (Ando et al., 2000), cecal ligation and perforation (CLP) (Merx et al., 2004, 2005), and systemic challenge with Gram-positive or Gram-negative bacteria (Catron et al., 2004; Chaudhry et al., 2008).

The mechanism(s) by which statin treatment may protect against lethal bacteremia and sepsis are not yet understood. Certain statins exhibit modest inhibitory activity against bacterial growth in vitro, e.g., minimum inhibitory concentration (MIC) 30 mg/l versus Staphylococcus aureus for simvastatin (Jerwood and Cohen, 2008), but the drug level required for this effect (30 mg/l = 70 μM) exceeds by ~300-fold the serum level reported in the experimental mouse model following high-dose therapy (220 nM with 100 mg/kg/day simvastatin orally) (Thelen et al., 2006). Rather, more attention has focused on immunomodulatory effects of statins that could reduce the proinflammatory “cytokine storm” of sepsis. Statin-treated mice had decreased TNF-α and IL-1β or IL-6 levels upon LPS challenge (Ando et al., 2000; Chaudhry et al., 2008), and statin-treated human volunteers receiving LPS also had lower serum TNF-α and IL-1β levels, coupled with diminished monocyte Toll-like receptor 4 (TLR4) and TLR2 expression (Niesner et al., 2006). Peripheral blood mononuclear cells (PBMCs) isolated from statin-treated humans showed diminished TNF-α and IL-6 responses to LPS ex vivo (Rosenson et al., 1999), and statin exposure blunted LPS-induced TNF-α, IL-1β, IL-6, and inducible nitric oxide synthase (iNOS) expression by rat macrophages in vitro (Pahan et al., 1997).

Here, we consider an alternative mechanism by which statins could influence the outcome of bacterial infection: by altering the
intrinsic innate immune (bactericidal) capacity of phagocytic cells. We find that statin therapy in vitro, ex vivo, and in vivo increases the ability of phagocytes to kill the leading human pathogen \textit{S. aureus}, a phenotype we correlate to increased production of antimicrobial DNA-based extracellular traps (ETs). This alteration in immune cell behavior is mediated by inhibition of the sterol pathway.

RESULTS

Statin Induction of Phagocyte Antimicrobial Activity In Vitro

We first tested the effect of in vitro stimulation with the classical HMG-CoA reductase inhibitor mevastatin on the ability of various phagocytic cell types to kill \textit{S. aureus}. Statin pretreatment significantly increased the antistaphylococcal activity of human neutrophils, human U937 monocytes/macrophages, and murine RAW 264.7 macrophages (Figure 1A). At the concentration used, mevastatin had no direct effect on \textit{S. aureus} growth (Figure 1B), nor did pretreatment of \textit{S. aureus} with mevastatin render the bacterium more susceptible to killing by normal neutrophils (Figure 1C). Statin enhancement of human neutrophil killing of \textit{S. aureus} was observed in assays performed with or without prior opsonization of the bacteria using autologous serum (Figure 1D). Statin treatment enhanced RAW 264.7 macrophage clearance of strains of methicillin-resistant \textit{S. aureus} (MRSA), group B \textit{Streptococcus}, \textit{Salmonella typhimurium}, and \textit{Streptococcus pneumoniae}, suggesting the induction of a generalized mechanism(s) for bacterial killing (Figure 1E).

In beginning to probe the mechanism by which statin treatment could enhance leukocyte bactericidal function, we were presented with a paradox. Previous literature suggested that statin treatment of neutrophils and macrophages was associated with reduction in phagocytosis and oxidative burst, two key effectors of bacterial killing (Benati et al., 2010; Bokoch and Prossnitz, 1992). We confirmed that mevastatin treatment reduced phagocytic uptake of fluorescently labeled \textit{S. aureus} by human neutrophils as measured by FACS (Figure 2A) and reduced the magnitude of the neutrophil oxidative burst elicited by \textit{S. aureus} infection (Figure 2B). These observed inhibitory

![Figure 1. Statin Induction of Phagocyte Antimicrobial Activity In Vitro](image)

- (A) In vitro killing of \textit{S. aureus} by primary human neutrophils or RAW 264.7 and human U937 cells treated with mevastatin or vehicle control.
- (B) Growth of \textit{S. aureus} strain Newman in RPMI with or without mevastatin (50 μM) or DMSO vehicle control.
- (C) In vitro killing of \textit{S. aureus} pretreated with mevastatin or vehicle control by primary human neutrophils.
- (D) In vitro killing of opsonized versus nonopsonized \textit{S. aureus} by primary human neutrophils treated with mevastatin or vehicle control.
- (E) In vitro killing of \textit{S. aureus} strain Newman, \textit{S. aureus} strain Sanger (MRSA), \textit{S. agalactiae} strain COH1 (GBS), \textit{S. typhimurium}, and \textit{Streptococcus pneumoniae} strain D39 by RAW 264.7 cells treated with mevastatin or vehicle control.

![Figure 2. Statin Treatment Reduces Phagocytosis and Oxidative Burst While Increasing Extracellular Killin](image)

- (A) Mean fluorescence intensity as parameter for phagocytosis of neutrophils after infection with FITC-labeled \textit{S. aureus} wood strain bioparticles measured by flow cytometry. As a control, 10 μg/ml of cytochalasin D was added to the samples 10 min prior to infection to prevent phagocytosis.
- (B) Oxidative burst of primary human neutrophils stimulated with mevastatin or vehicle control measured by flow cytometry after 30 min incubation in the presence of 2',7'-dichlorofluorescein.

(C) Extracellular killing of \textit{S. aureus} by primary human neutrophils treated with mevastatin or vehicle control. To prevent phagocytosis, 10 μg/ml of cytochalasin D was added to the samples 10 min prior to infection. Experiments were performed 3–4 times with similar results; representative experiment shown + SD. **p < 0.01, ***p < 0.005, n.s. = not significant by two-tailed Student’s t test comparing control versus statin-treated group.
Statins Boost Phagocyte Extracellular Traps

A key emerging concept in neutrophil biology is antimicrobial activity achieved through the elaboration of neutrophil extracellular traps (NETs) (Brinkmann et al., 2004). The product of a cell death pathway, NETs are composed of nuclear DNA, histones, antimicrobial peptides, and proteases and are capable of entrapping and killing a wide variety of bacteria and other microbes (Brinkmann and Zychlinsky, 2007; von Kockritz-Blickwede and Nizet, 2009). We found that mevastatin treatment in vitro strikingly enhanced NET production by freshly isolated and PMA-stimulated human neutrophils (Figures 3A and 3B). Histones and cathelicidin antimicrobial peptide LL-37, two of the key antimicrobial effectors present in NETs (Brinkmann and Zychlinsky, 2007; von Kockritz-Blickwede and Nizet, 2009), were also released in greater amounts following statin treatment and colocalized within the NETs (Figures 3A and 3B). Quantifying NETs by direct assessment of extracellular DNA release (Fuchs et al., 2007), we calculated mevastatin-treated neutrophils produced 2.5-fold more NETs (Figure 3C), leading to greater entrapment of fluorescently labeled S. aureus within these structures (Figure 3D). We found that lovastatin, simvastatin, and fluvastatin also enhanced NET production, demonstrating that this phenomenon is not limited to mevastatin and is common across the statin class of drugs (Figure 3E). Consistent with a specific NET-dependent killing mechanism, the mevastatin-induced enhancement of neutrophil bacterial killing was abrogated if neutrophils were lysed mechanically using sonication (Figure S1A) or if exogenous micrococcal nuclease treatment was used to degrade NETs (Figure S1B).

NET release has previously been reported to depend upon reactive oxygen species (ROS) generation through the NAPDH oxidase. When we blocked neutrophil ROS production using the NAPDH oxidase inhibitor diphenylene iodonium (DPI), the level of NET generation was clearly reduced, yet still significantly greater in statin-treated cells versus controls (Figure 3F). Combined with the observation that statin treatment reduced overall ROS production in the neutrophils (Figure 2B), the evidence suggests that statins may predispose cells to enter the NET cell death pathway in response to a lower threshold level of ROS signal. Another biochemical marker of NET formation identified in response to LPS or ROS is deimination of arginine residues in histones to citrullines, a posttranslational modification catalyzed by peptidyl arginine deiminase 4 (PAD-4) that facilitates chromatin decondensation (Wang et al., 2009). However, we found that in contrast to control neutrophils, treatment with an inhibitor of PAD-4-mediated histone citrullination failed to block the increased NET production associated with mevastatin or simvastatin treatment (Figures S2A and S2B).

Statin Induction of Neutrophil Extracellular Traps

Statin enhancement of S. aureus killing was not restricted to human neutrophils, but was also observed in monocytes/macrophages (Figure 1A). Similar to our findings with neutrophils, statin treatment of RAW 264.7 macrophages reduced phagocytic uptake of S. aureus (Figure 3S). Unlike neutrophils, eosinophils, or mast cells (von Kockritz-Blickwede et al., 2008), release of nuclear DNA to form ETs has never been...
Statins Boost Phagocyte Extracellular Traps

To extend our observations to statin treatment of the whole animal, thioglycolate-stimulated peritoneal cells were extracted and purified from mice that had been prefed with standard chow supplemented with or without simvastatin. In both groups of mice, the composition of the peritoneal cell population was 60%–70% neutrophils and 10%–20% mononuclear cells (Figure 5A). In good correlation to the in vitro data, the peritoneal cells from simvastatin-treated mice showed increased production of ETs (Figure 5B) as well as enhanced killing of S. aureus compared to peritoneal cells isolated from control mice (Figure 5C).

Protective Effect of Statin Therapy against S. aureus Pneumonia

To determine the effects of statin therapy on resistance to infection, we used an established intranasal inoculation model of S. aureus pneumonia that has been shown to mirror several clinical and pathological features of human bacterial pneumonia (Bubeck Wardenburg et al., 2007; Bubeck Wardenburg and Schneewind, 2008). In this model, mice challenged with a sublethal dose of S. aureus (1–2 × 10^8 cfu/animal) developed histopathological evidence of lung organ damage between 24 and 72 hr of infection (Bubeck Wardenburg et al., 2007). In comparison to mice fed standard chow, we found that mice fed chow supplemented with simvastatin showed reduced bacterial levels in the lung 48 hr postchallenge (Figure 5D). Histopathological changes characteristic of severe bacterial pneumonia were diminished in simvastatin-treated mice. Whereas the majority of bronchi and alveolar spaces were obliterated by inflammatory exudates, immune cell infiltrates, and staphylococci in control mice (Figure 5E, top), the simvastatin-treated group exhibited smaller, discrete areas of inflammation, surrounded by large unaffected areas of lung tissue (Figure 5E, bottom). Recruitment of a mixed population of neutrophils and macrophages was evident in the inflammatory lesions of both groups. To determine if the effect of statin treatment to enhance ET production was operating in vivo, we also examined lung sections for ETs. In correlation with our in vitro data, significantly more ETs (~7-fold increase), enriched in the cathelicidin peptide CRAMP, were found in the simvastatin-treated group (Figures 5F, 5G, S5A, and S5B). Many of the ETs from simvastatin-treated mice were quite large and extended into the alveolar space (Figures 5F and S5A), whereas traps from control mice were small and localized to the alveolar wall. While the more severe degree of inflammation and pneumonia in control mice versus simvastatin-treated mice precludes a meaningful analysis by total levels, immunofluorescence for CRAMP expression on a per cell basis (CRAMP/DAPI staining) precludes a meaningful analysis by total levels, immunofluorescence for CRAMP expression on a per cell basis (CRAMP/DAPI staining)
ratio, calculated from the data shown in Figure S5B) was significantly greater in simvastatin-treated animals (1.01 ± 0.12) than controls (0.87 ± 0.16, p < 0.001).

Inhibition of Sterol Production Stimulates the Formation of Phagocyte Extracellular Traps

We next sought to determine the relationship between the mevalonate pathway for cholesterol biosynthesis, which statins target medically, and the observed effect of these drugs to boost phagocyte antibacterial function. Effective inhibition of HMG-CoA reductase by siRNA knockdown of Hmgcr in thioglycolate-induced murine peritoneal macrophages (Figure 6A) was sufficient to enhance both their production of METs (Figures 6B and 6C) and their killing of *S. aureus* (Figure 6D), suggesting that statin treatment was not exerting an off-target effect.

Moreover, addition of an excess of the downstream HMG-CoA reductase product mevalonate almost completely blocked the bactericidal enhancing properties of statin therapy on macrophages (1 mM mevalonate shown in Figure 6E; 250 μM mevalonate shown in Figure S6A), without exerting a cytotoxic effect on the cells (Figure S6B).

The mevalonate pathway is involved in a number of cellular processes, including protein prenylation and cholesterol synthesis (Figure 7A). A critical juncture is the processing of farnesyl pyrophosphate (FPP), which can be used in protein prenylation pathways, such as farnesylation or geranylgeranylation, or committed to the cholesterol synthetic pathway by conversion to squalene. To pinpoint which of these branch pathways mediates NET induction by statins, we performed NET quantitation assays following treatment with inhibitors against farnesyl transferase (FTI-277), geranylgeranyl transferase (GGTI-298), and squalene synthase (YM-53601). We found that YM-53601 induced NETs to a level similar to mevastatin treatment (Figures 7B and 7C), whereas GGTI-298 and FTI-277 had no significant effect (Figure 7B). As observed with statins, treatment of neutrophils with YM-53601 resulted in enhanced clearance of *S. aureus* (Figures 7D and 7E). These data suggest the effects of statins in boosting NET production and bacterial killing are mediated by intermediates of the sterol synthetic pathway.
necrotic neutrophil lysis. The effect to inflammatory consequences than pathogen-mediated neutrophil could have a more favorable ratio of antibacterial function synergistically with cytokine modulation to help explain the lung infection may not only exert antibacterial effects but also to provoke inflammation, this calculated “sacrifice” of the own phagocytic uptake (Kobayashi et al., 2010). Thus, while capable of triggering the rapid necrotic lysis of neutrophils after challenged systemically with S. aureus, we found statins to enhance formation of phagocyte ETs and promote bacterial killing. This phenotypic effect may function synergistically with cytokine modulation to help explain human clinical data, pointing to a lower risk of severe bacterial infection and sepsis in patients receiving statin therapy (Almog et al., 2001; Martin et al., 2007; Kopterides and Falagas, 2009; Kruger et al., 2006; Liappis et al., 2001; Martin et al., 2007; Thomsen et al., 2008) and the therapeutic benefits of statins observed in mice challenged systemically with S. aureus or Salmonella typhimurium (Catron et al., 2004; Chaudhry et al., 2008). The fact that statins show a protective effect in animals receiving LPS challenge alone reflects the importance of their immunomodulatory properties (Ando et al., 2000).

The formation of ETs by phagocytic cells has been shown to not only exert antibacterial effects but also to provoke inflammation, and pathological release of ETs appears to play a role in inflammatory disease conditions such as autoimmune vasculitis and lupus nephritis (Gupta et al., 2010; Hakkim et al., 2010; Kessenbrock et al., 2009). In the case of S. aureus, excessive neutrophil recruitment to the lung, mediated in part by its secreted α-toxin, is a contributor to lung tissue injury and disease pathology (Bartlett et al., 2008). It is notable that S. aureus is capable of triggering the rapid necrotic lysis of neutrophils after its own phagocytic uptake (Kobayashi et al., 2010). Thus, while release of NETs in response to S. aureus lung infection may provoke local inflammation, this calculated “sacrifice” of the neutrophil could have a more favorable ratio of antibacterial effect to inflammatory consequences than pathogen-mediated necrotic neutrophil lysis.

Beyond histopathological images of entrapped bacteria, in vivo evidence that ETs play an important role in innate immunity is derived from studies that show increased virulence of pathogens capable of producing endonucleases that degrade ETs (Beiter et al., 2006; Buchanan et al., 2006; Walker et al., 2007), decreased virulence of bacterial strains expressing surface structures that promote entrapment within ETs (Crotty Alexander et al., 2010), or a therapeutic benefit of nuclease inhibitors in ET preservation at foci of acute infection (Buchanan et al., 2006). The present study contributes additional circumstantial evidence for an important role of ETs in host antibacterial defense and may help explain a decades-old study that provided clear evidence that an “as yet unidentified” nonphagocytic, extracellular killing mechanism was critical to control of S. aureus pneumonia in the murine model (Nugent and Pesanti, 1982). And while our studies confirm earlier observations that statin therapy inhibits phagocytic uptake of bacteria by neutrophils and macrophages (Figures 2A and S3), prior opsonization of the bacteria increased overall killing by statin-treated neutrophils (Figure 1D), hinting that other innate antibacterial activities of the phagocytic cells could be statin responsive. Revealing further complexity and interdependence of extracellular and intracellular killing mechanisms, prior opsonization and phagocytotic uptake of Candida albicans have each been reported to increase NET production (Urban et al., 2006).

The ultimate effect of statin induction of ET formation on host immune clearance of pathogens is certain to vary by bacterial strain, site of infection, prior immunity of the host, and additional factors that together merit circumspection in interpreting the broader implications of our data. Indeed, one report has described reduced clearance of Klebsiella pneumoniae from the lung in mice receiving statin treatment (Fessler et al., 2005), and another report, using assay conditions that would not
support ETs, showed reduced opsonophagocytosis of *S. aureus* by macrophages and GBS by HL-60 granulocytes after pretreated in vitro treatment with simvastatin (Benati et al., 2010). Because *S. aureus* expresses an array of virulence factors that impair complement-mediated opsonophagocytosis (Jongerius et al., 2007; Laarman et al., 2010), and because it can resist oxidative burst killing through catalase expression and the antioxidant golden staphyloxanthin pigment (Liu et al., 2005), the importance of ET-dependent killing may be proportionately increased. In contrast, for pathogens highly susceptible to phagocytosis and subsequent intracellular killing mechanisms, increased stimulation of phagocytes toward the ET cell death pathway could prove inconsequential or even detrimental. Further studies of the relationship between the sterol synthesis pathways and innate immune function will be important to understand potential infectious disease ramifications for millions of individuals receiving chronic statin therapy.

EXPERIMENTAL PROCEDURES

Animals

Male 10- to 12-week-old CD1 or C57BL/6 mice (Charles River Laboratories; Wilmington, MA) were used in this study. Mice were maintained under standard conditions according to institutional guidelines. Experiments were approved by the UCSD Institutional Animal Care and Use Committee.

Cell Culture

Human neutrophils were purified from healthy volunteers using the PolymorphPrep system (Axis-Shield, Fresenius; Waltham, MA) per manufacturer’s recommendations. Neutrophils were cultured at 37°C + 5% CO₂ in serum-free, antibiotic-free RPMI at 10⁶ cells/ml (500 µl per well in 24-well plate) in the presence of 50 µM mevastatin (Sigma), 10 µM simvastatin (Sigma), 10 µM GGTI-298 (Sigma), 10 µM FTI-277 (Sigma), or 10 µM YM-53601 with appropriate...
concentrations of vehicle control. After 1 hr, cells were stimulated with 156 ng/ml phorbol myristate acetate (PMA, Sigma) for an additional 1 hr. RAW 264.7 murine and U937 human monocyte/macrophage cells were cultured at a density of 10^6 cells/ml in DMEM and RPMI 1640, respectively, supplemented with 10% heat-inactivated FBS and penicillin/streptomycin (Invitrogen). After 24 hr, cells were further incubated in medium without FBS and stimulated overnight with 50 μM statin or vehicle control in the presence of 50 μM mevalonolactone (Sigma) to prevent apoptosis and maintain physiologic relevance.

In Vitro Bactericidal Assays

Human as well as murine cells were infected with bacteria at a multiplicity of infection (moi) of 1. After centrifugation for 10 min at 1500 rpm, infected neutrophils were incubated for 20 min at 37°C in 5% CO₂. RAW 264.7 and U937 cells were incubated for 4 and 8 hr, respectively. After incubation, Triton X-100 (0.06% final concentration) was added to lyse infected cells. Lysates were diluted and plated on THA plates or THA plates supplemented with 2% yeast extract for enumeration of surviving cfu. Percent killing by statin-treated leukocytes was determined by dividing the number of cfu from statin-treated neutrophils by the number of cfu from vehicle-treated neutrophils.

Phagocytosis

For determination of phagocytosis by flow cytometry, Alexa Fluor 488-labeled *S. aureus* wood strain bioparticles (Invitrogen) were added to cells at a moi of 1. After 20 min of incubation at 37°C, PMNs were washed twice with cold HBSS (Invitrogen), and mean fluorescence intensity (phagocytosis) was measured using a FACSCalibur Flow Cytometer (BD Biosciences; San Jose, CA). For infection of RAW cells, *S. aureus* bioparticles were added at moi = 1 and centrifuged for 10 min at 1500 rpm. After an additional 10 min of incubation at 37°C, cells were washed twice with cold PBS, detached with trypsin, and washed again with cold PBS. Again, mean fluorescence intensity (phagocytosis) was measured using flow cytometry.

Oxidative Burst

After statin treatment, human neutrophils were centrifuged for 5 min at 1600 rpm and resuspended in RPMI 1640 without phenol red (Celtigo; Manassas, VA). 2′,7′-dichlorofluorescein (10 μM, Sigma) was then added, and fluorescence was measured using a SpectraMax Gemini EM fluorescence reader over the course of 1 hr at 37°C. The VMax was calculated by the SpectraMax Pro software.

Entrapment Assay

Cells were seeded at a density of 5 × 10^6 cells/ml in RPMI and treated with mevastatin or vehicle control as described above to induce formation of ETs. Cells were then infected with FITC-labeled *S. aureus* strain Newman (carboxyfluorescein, Invitrogen, 30 min at 4°C) at a moi = 20 bacteria per cell. After centrifugation for 10 min at 1500 rpm and an additional 5 min of incubation at 37°C, cells were gently washed twice with HBSS to remove unbound bacteria. To release bacteria from ETs, PMNs were incubated in the presence of 50 U/ml of DNase I for 15 min at 37°C. One hundred microliters of supernatant was transferred to a 96-well plate. Relative number of bacteria in the supernatant was determined by reading the absorption/emission at 485 nm/538 nm in a SpectraMax Gemini EM fluorescence reader (Molecular Devices; Sunnyvale, CA).

Induction and Quantification of Extracellular Traps

To induce ETs from human PMNs, PMNs were cultured in serum-free, antibiotic-free RPMI at 10^6 cells/ml in the presence of 50 μM mevastatin (Sigma), 10 μM simvastatin (Sigma), 50 μM lovastatin (Sigma), 50 μM fluvastatin (Cayman; Ann Arbor, MI), 10 μM GGT1-298 (Sigma), 10 μM FTI-277 (Sigma), or 10 μM YM-53601 with appropriate concentrations of vehicle control. After 1 hr, cells were stimulated with 156 ng/ml PMA (Sigma) for an additional 1 hr. RAW 264.7 cells were cultured at a density of 10^6 cells/ml in DMEM and RPMI 1640, respectively, supplemented with 10% heat-inactivated FBS and penicillin/streptomycin. After 4 hr, cells were stimulated overnight in medium without FCS supplemented with statin (50 μM) or vehicle control and in the presence of mevalonolactone (50 μM, Sigma). To induce METs, 156 ng/ml PMA was added 2 hr prior to analysis. An established method for NET quantification (Fuchs et al., 2007) was adapted for our purposes. Micrococcal nuclease (500 mU/ml, Sigma) was added to neutrophils to degrade ETs. After 15 min of incubation at 37°C, 0.5 mM EDTA was added to stop nuclease activity, and supernatants were collected. Total genomic DNA was isolated using DNAzol supplemented with polyacryl-carrier (Molecular Research Center, Inc.; Cincinnati, OH) per manufacturer’s instructions. DNA was quantified using the PicoGreen dsDNA quantification kit (Invitrogen). Fluorescence was measured using a SpectraMax Gemini EM fluorescence reader. The percentage extracellular DNA was determined by dividing the amount of ET DNA by the total DNA. For peritoneal cells, 156 ng/ml PMA was added 1 hr prior to analysis. ET production was assessed using a modified version of the above ET protocol. Briefly, micrococcal nuclease (500 mU/ml) was added to neutrophils to release ETs. After 15 min of incubation at 37°C, 0.5 mM EDTA was added to stop nuclease activity, and supernatants were collected. The supernatant was centrifuged for 5 min at 3000 rcf to remove nonadherent cells. Total genomic DNA was isolated using DNAzol supplemented with polyacryl-carrier (Molecular Research Center, Inc.) per manufacturer’s instructions. DNA was quantified using the PicoGreen dsDNA quantification kit (Invitrogen). Fluorescence was measured using a SpectraMax Gemini EM fluorescence reader. The percentage extracellular DNA was determined by dividing the amount of ET DNA by the total DNA.

Fluorescence Microscopy

For visualization of ETs, cells were seeded on poly-L-lysine-coated glass slides (neutrophils) or on glass-bottom microwell plates (macrophages), cell-type-specifically treated with statins or vehicle control as described above, infected with *S. aureus* strain Newman at a moi of 1, centrifuged at 800 rpm for 10 min, and further incubated for 20 min. The Live/Dead Viability/Cytotoxicity kit for mammalian cells (Invitrogen) was used without fixation of cells to visualize NETs or METs and to determine cell viability of trap-forming cells by fluorescence microscopy. Hoechst-33342-trihydrochloride (final concentration 1 μM) was added to the sample 5 min prior to microscopic analysis to stain DNA (blue). The Live/Dead BacLight Bacterial Viability Kit (Invitrogen) was used to determine viability of FITC-labeled *S. aureus* entrapped in the METs by fluorescence microscopy. Infected cells were stained as recommended by the manufacturer using only the red dye component to visualize dead cells, washed three times with PBS, fixed with 1% paraformaldehyde for 5 min, washed again, and mounted onto glass slides using Prolong Gold (Invitrogen). A mounting medium containing the DNA-staining dye DAPI (blue). For immunofluorescence staining of cathelicidin peptides (murine CRAMP or human LL-37), infected cells were fixed with 4% paraformaldehyde, washed with PBS, blocked, and permeabilized in the presence of PBS + 3% BSA + 2% goat serum + 0.2% Triton X-100 for 45 min. Then the samples were washed again and incubated with polyclonal rabbit anti-CRAMP/LL-37 (diluted 1:300) (Dorschner et al., 2001) or with mouse monoclonal anti-H2A-H2B-DNA complex (#PL2-6 mouse IgG2b stock: 2.65 mg/ml, diluted 1:3000) in the presence of PBS + 2% BSA overnight at 4°C (Losman et al., 1992). A universal rabbit IgG (Dako; Carpinteria, CA) or mouse IgG2b (Thermo Scientific; Rockford, IL) served as isotype negative control. After washing three times with PBS, samples were incubated with secondary Alexa 488- or Alexa 568-labeled goat anti-rabbit/mouse IgG antibodies (1:500; Molecular Probes; Eugene, OR) for 45 min at room temperature, washed again, and embedded using ProLong Gold with DAPI.

Immunohistopathology

Paraffin-embedded lung tissue samples were deparaffinized by successive immersion in three changes of xylene for 10 min each and rehydrated by immersion in decreasing concentrations of ethanol (100%, 95%, and 70%, each twice for 5 min). After washing with PBS, slides were heated in a microwave for 10 min in the presence of citrate puffer (Dako) for antigen retrieval. After cooling down for 20 min, the slides were washed with PBS and immunostained as described above. Mounted samples were examined using an inverted confocal laser-scanning 2-photon microscope, Olympus Fluoview FV1000 with Fluoview Spectral Scanning technology (Olympus; Center Valley, PA). Images were obtained using a 20×/0.7 or 60×/1.42 Plan APO objectives. Alternatively, images were recorded using an Olympus Spinning Disc Confocal IX81 microscope with a Xenon DGS illumination source driven by SlideBook software (Intelligent Imaging Innovations; Denver, CO). In this case, images

452 Cell Host & Microbe 8, 445–454, November 18, 2010 ©2010 Elsevier Inc.
were obtained using a 10×/0.3 UPlan-FCN, 20×/0.45 LUCPlanFLN, or 40×/1.0 oil UPlanAPO objective. Mean fluorescence intensities of images were quantified using ImageJ 1.41 software.

FACS Analysis
For determination of neutrophil and macrophage content in peritoneal lavage from thioglycollate-treated mice, cells were incubated for 5 min with anti-CD32 antibodies to block Fc receptors; stained with phycocerythrin (PE)-conjugated anti-F4/80 (Serotec; Kidlington, UK), fluorescein isothiocyanate (FITC)-conjugated anti-Ly6G (Gr1) (BD Pharmingen; San Diego, CA), or with their respective isotype control antibodies; and incubated for 30 min at 4°C. Labeled cells were analyzed by flow cytometry in a FACS Calibur (Becton Dickinson; Franklin Lakes, NJ).

Ex Vivo Killing Assays
Outbred C57Bl/6 mice were injected intraperitoneally with 3 ml of 3% thioglycolate. To harvest thioglycolate-induced peritoneal macrophages, 12-week-old C57BL/6 mice were injected intraperitoneally with 3 ml of 3% thioglycolate. After 3–6 days, macrophages were harvested by peritoneal lavage with PBS (150 mM NaCl, 5 mM KCl, 25 mM NaHCO3, 1 mM MgCl2, 1 mM CaCl2, and 0.5% BSA, pH 7.4). The obtained macrophages were cultured at 5×10^5 cells/ml. Mouse Hmgcr and control SMART-siRNAs (Dharmacon; Lafayette, CO) were transfected into macrophages using DeliverX tranfection reagent (Panomics; Santa Clara, CA) per manufacturer’s instructions. The next day, transfected macrophages were lysed with 0.06% Triton X-100 and plated onto THA plates for enumeration of surviving cfu.

Staphylococcus aureus Pneumonia Model
As above, outbred C57Bl/6 mice were fed ad libitum with pulverized Harlan Teklad 7912 chow ± 500 mg/kg simvastatin (generic, pharmaceutical grade from Dr. Reddy’s Laboratories Ltd. [Hyderabad, India]). After 5 days of feeding, mice were injected with 3 ml 3% thioglycollate solution (BD Biosciences), and peritoneal cells were isolated by lavage with PBS 4 hr later. Cells were treated with 1× RBC lysis buffer (eBiology; San Diego, CA) to lyse erythrocytes, resuspended in RPMI medium, and seeded in tissue culture plates at a density of 10^5 cells/ml. Cells were immediately infected with S. aureus strain Newman using a moi = 1 and then incubated at 37°C, 5% CO2 for 30 min. After incubation, Triton X-100 (0.06% final concentration) was added to lyse neutrophils, and lysates were plated on THA for enumeration of surviving cfu.

Lung Histology
Formalin-fixed lung tissue was embedded in paraffin and then cut into 3 μm thick sections. Tissue sections were stained with hematoxylin and eosin (H&E) and then examined microscopically for pathological alterations using a Zeiss Axiolab microscope (Zeiss 10×/0.25 Achromplan, 20×/0.5 Plan-Neofluor, or 40×/0.65 Achromplan objective) with an attached Sony Digital Photo 3CCD-Camera DKC-5000 at calibrated magnifications.

siRNA Transfection
To harvest thioglycollate-induced peritoneal macrophages, 12-week-old C57BL/6 mice were injected intraperitoneally with 3 ml of 3% thioglycollate. After 3–6 days, macrophages were harvested by peritoneal lavage with PBS and cultured in RPMI + 10% FBS + penicillin/streptomycin. For killing assays, cells were immediately infected with S. aureus strain Newman using a moi = 1 and then incubated at 37°C, 5% CO2 for 30 min. Mouse Hmgcr and control SMART-pool siRNAs (Dharmacon; Lafayette, CO) were transfected into macrophages using DeliverX tranfection reagent (Panomics; Santa Clara, CA) per manufacturer’s instructions. The next day, S. aureus (moi = 1) was added and brought in close proximity to macrophages by centrifugation. After 8 hr of incubation, macrophages were lysed with 0.06% Triton X-100 and plated onto THA plates for cfu enumeration. Percent killing by Hmgcr siRNA-transfected macrophages was determined by dividing the number of cfu recovered from Hmgcr siRNA-transfected macrophages by the number of cfu from control siRNA-transfected macrophages.

Quantitative RT-PCR
Total RNA was extracted from cells using TRIzol Reagent (Invitrogen). cDNA was prepared using Superscript III First-Strand Synthesis Supermix for qRT-PCR (Invitrogen). cDNAs were amplified in SYBR GreenER qPCR SuperMix (Invitrogen) using an ABI Prism 7100 Sequence Detection System (Applied Biosystems; Foster City, CA). We used the following primer sequences: Gapdh-F, 5′-AATGGTGGCTGGTGGATCT-3′; Gapdh-R, 5′-CATCGAAGGTT GAAAGTGTC-3′; Hmgcr-F, 5′-TCGTACCATTCTCGCAACAA-3′; Hmgcr-R, 5′-GATTCCTCAGCAGCTAT-3′. Hmgcr sequences were taken from Pri merBank (http://pga.mgh.harvard.edu/primerbank/index.html, ID# 18043 195a2). Cycling conditions for PCR amplifications were 15 s at 95°C, 25 s annealing at 57°C, and 45 s at 72°C. Data are expressed as relative mRNA expression levels normalized to the housekeeping gene Gapdh.

Statistics
Data were analyzed by using GraphPad Prism 4.0 (GraphPad Software; La Jolla, CA). Each experiment was performed at least three times at independent occasions, and within each experiment all samples were processed in triplicate. Differences were analyzed using a Student’s t test, a one-way ANOVA, or a two-tailed Mann-Whitney test; p values < 0.05 were considered significant.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures and six figures and can be found with this article online at doi:10.1016/j.chom.2010.10.005.

ACKNOWLEDGMENTS
This work was supported by NIH grants AI077780 to V.N. and GM069338 to C.K.G. O.A.C. was funded in part by the UCSD Genetics Training Program (T32 GM008666). M.v.K.-B. was supported through a fellowship from the Deutsche Akademie der Naturforscher Leopoldina (BMBF-LPD 9901/8-187). The authors wish to thank the UCSD Histopathology Core facility and the UCSD Microscopy Facility (supported by UCSD Neuroscience Microscopy Shared Facility Grant P30 NS047101) for their assistance.

Received: February 11, 2010
Revised: July 27, 2010
Accepted: September 17, 2010
Published: November 17, 2010

REFERENCES

Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis 189, 408–413.

Stattis Boost Phagocyte Extracellular Traps

