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Supplemental Experimental Procedures



Whole Genome High-throughput siRNA Screens

A 384-well plate-based assay was optimized to identify siRNAs that influence
endosomal TLR7 and TLR9 signaling in response to their cognate ligands, R848
and CpG oligonucleotides. Genome-wide libraries comprising 107,734 synthetic
siRNAs targeting 19529 unique human genes in total were arrayed in 384-well
plates such that each well contained two unique and identifiable siRNAs per
gene (7ng siRNA per gene, per well). There were, on average, 3 wells per gene
or 6 siRNAs per gene. Each plate also contained positive controls (MyD88 and
p65 siRNAs), negative controls (GL3-luciferase siRNA), and scramble siRNA
controls. The library was introduced into the HEK293T/TLR7 NF-kB luciferase
reporter line or the HEK293T/TLR9 NF-«B luciferase reporter line by a high-
throughput transfection process (Konig et al., 2008). For the TLR7 and TLR9
screens, 0.5uM of R848 or 3uM of CpG oligonucleotides (ODN 2006-G5, 5’-
TCGTCGTTTTGTCGTTTTGTCGTTGGGGG-3’') were added to the wells 72
hours after siRNA transfection. Seven hours post stimulation, Bright-Glo
(Promega) was added in equal volumes to each well and the luminescence
associated with each sample was analyzed. The TLR7 and TLR9 screens were
run in duplicates and statistically analyzed as described below. All steps were
performed using a fully integrated high-throughput cellular genomics robotic
system (GNF Systems).

SsiRNA Screening Data Transformation and Primary Hits

Whole-genome siRNA screening data were obtained for 2 assays: TLR7 and
TLR9. Each well was measured twice, and readings were normalized and
geometrically-averaged using the same data processing pipelines as described
previously (Konig et al.,, 2009; Konig et al., 2008) (also see “siRNA Activity
Score” below); briefly, scores were scaled via a non-linear transformation with
negative controls set to 1.0 and positive controls set to 0.1. This process
generated a normalized “sSiRNA activity score” for each well tested. To
aggregate activity scores of multiple siRNAs for the same gene, we applied an
RSA (redundant siRNA analysis) algorithm to each screen individually, so that a
p-value was obtained for each siRNA in each screen (Konig et al., 2007) (also
see “RSA Activity Score” below); this analysis generated an “RSA activity score”
for each gene tested.

Next, we defined the primary TLR7 and TLR9 hits as those genes with threshold
siRNA activity scores less than or equal to 0.4; this resulted in 5660 and 3924
primary hits for the TLR7 and TLR9 screens, respectively. Additionally, whole
genome screening data for cytotoxicity (TOX) was obtained previously (Konig et
al., 2008). For this dataset, a threshold siRNA activity score was set at less than
or equal to 0.7 to identify those genes that were cytotoxic. By this definition,
4958 genes caused significant cellular toxicity.



Correlation Between TLR7 and TLR9 Screens

Altogether, the siRNA activity scores for genes that were profiled in the TLR7 and
TLR9 screens have a Pearson correlation coefficient of 0.27 (p < 107'%). TLR7
primary hits have a 41% chance to also be considered a hit in the TLR9 screen,
while non-TLR7 primary hits only have a 12% chance to be considered TLR9
hits; therefore, the overlap between the two hit lists are highly significant (chi-
squared test, p < 107'%). Importantly, upon reconfirmation analysis, we did not
observe any genes that were TLR7- or TLR9-specific (i.e. all genes impacted
both pathways), so we conclude that non-overlapping genes in the primary
screen were due to false negative activities.

Evidence-Based Analysis of Screening Data: Integrative evidence-based
analysis, gene confirmation, and mechanistic studies (See Figure S1B for a
flow chart of this systematic validation strategy, Figure S1C for a
compilation of all evidences, and Table S2 for the metrics and
guantification for each gene confirmed by this approach)

Evidence Analyses Summary

We hypothesized that genes having multiple lines of independent data to support
TLR7/TLR9-related functions are less likely to be experimental false positives;
therefore, for each gene identified as a primary hit using the threshold siRNA
activity scores described above, we compiled various datasets that would provide
potential support for association with TLR7/9. In addition to siRNA screening data
analyses (siRNA activity scores and RSA activity scores), such types of
evidences included: protein network analyses, and gene expression analyses (all
evidences are listed below and numbered relative to Figure S1B). Each piece of
evidence was transformed into a normalized support score between zero and
one, representing a minimum and maximum level of support, respectively. This
process of using multiple evidences has been employed in several previous
studies (Konig et al., 2009; Konig et al., 2008) and has been shown to effectively
prioritize primary hits for confirmation.

Individual Evidences and Analyses Applied:

1. siRNA activity scores and RSA activity scores

To calculate siRNA activity scores for each well tested, the raw data was first
divided by the plate median, which was centered at 1.0. The duplicate readings
of each well were then geometrically averaged into a single siRNA activity score.
To further remove plate variations, a non-linear transformation was applied, so
that the median activities of positive controls on each plate were scaled to 0.1.
The best score for any given gene across multiple siRNAs was kept as the
siRNA activity score of the gene (See Table S2, column headings “TLR7” or
“TLR9”), and thus the siRNA activity score does not take into account the
activities of additional siRNAs targeting the same gene.



To calculate RSA activity scores, siRNA wells were ranked based on their
normalized activity in each assay, so that the most potent siRNAs were
aggregated on the top of the list (Konig et al., 2007). Since our library contained
multiple independently arrayed siRNAs for each interrogated gene, we expect
gene activities that are not driven by off-target activities to possess multiple
siRNAs which to cluster towards the top of the ranked list. Therefore, measuring
the degree of bias in the ranked distribution of all siRNAs for a gene provides a
quantitative association to whether the gene is likely a true hit (i.e. not an off
target effect). Based on this hypothesis, the RSA analysis algorithm calculates
the minimum probability that the siRNAs for a given gene have a biased
distribution of activities by chance, and then identifies those genes that have
multiple siRNAs supporting their activities based on this probability. Specifically,
this was done by iteratively applying accumulative hypergeometric probability
calculations to multiple siRNA subsets. As a result, each gene was assigned an
RSA p-value based on the distribution of its siRNA activities (See Table S2,
column headings “TLR7_LogP” and “TLR9 LogP”). Genes with multiple siRNAs
clustering towards the top tend to be assigned smaller p-values, and are
considered less likely to be active due to off-target activities or experimental
noise.

2. Protein Network Data Analyses —TLR7 and TLR9

Binary human protein-protein interaction data used in this study was derived from
Reactome (http://reactome.orq), BIND (http://www.bind.ca), MINT
(http://mint.bio.uniromaZ.it/mint/\Welcome.do), HPRD (http://www.hprd.org),
CORUM (http://mips.helmholtz-muenchen.de/genre/proj/corum/index.html),
Hynet (Prolexys, Inc.) (Bader et al., 2003; Ceol et al., 2010; Croft et al., 2011;
Peri et al., 2003; Ruepp et al., 2010), and a previously reported functional NF-
kB/TNF-a interaction map (Bouwmeester et al., 2004). For each gene list, all
direct interactions among the encoded proteins were extracted from the
databases described above, and three networks were constructed: a TLR7
network, a TLR9 network, and a TOX network (p-values <0.001). Each network
was generated based on those genes that had siRNA activity scores below the
thresholds indicated above (see siRNA Screening Data Transformation and
Primary Hits) for the TLR7, TLR9 and TOX screens. We hypothesized that
candidate innate factors that form highly interconnected and statistically
significant networks with each other and canonical TLR pathway members are
more likely to be relevant regulators of innate signaling. Conversely, if the
candidate innate factors form statistically significant networks with cytotoxic
proteins, these factors are less likely to be relevant regulators of innate signaling
and more likely to be toxic themselves. Therefore, we prioritized those genes
within TLR7 and TLR9 networks, and used the TOX network to exclude 2907
genes that were considered to be toxic (See Table S2, column headings
“TLR7_UnfilteredNet_Direct,” “TLR9_UnfilteredNet_Direct,” and
“TLR9_UnfilteredNet_Indirect”).




3. Protein Network Data Analyses - InnateDB Protein Interaction Enrichment

We collected 822 genes that could be linked to the TLR7/TLR9 pathway
components, based on three different sources: 1) Approximately 40 genes were
extracted from Bouwmeester et. al., 2004; 2) All the 1-hop binary protein-protein
interactions involving canonical known TLR7/9 pathway members were extracted
from Oda and Kitano et. al., 2006; 3) All the 1-hop binary protein-protein
interactions involving canonical known TLR7/9 pathway members were extracted
from InnateDB (Lynn et al., 2008). After removing redundant genes, the final list
contained 822 genes, which we collectively refer to as InnateDB genes in this
study. Next, we determined whether any of the genes identified by our own
study were previously annotated as InnateDB genes. This data was kept as a
first line of InnateDB evidence (See Table S2, column heading
“TLRPathwaylnnate”). Subsequently, we used several of the protein interaction
databases described above (BIND, MINT, Reactome, HPRD, CORUM, and
HYNET) to generate a list of total proteins predicted to interact with genes in the
TLR7 and TLR9 networks. The overall number of direct interactions between
each newly identified TLR7/9 regulatory co-factor and InnateDB genes was kept
as a second line of InnateDB evidence (See Table S2, column heading
“TLRPathwaylnnate_Direct”).

4. Human Tissue Gene Expression Analyses

GNF Tissue Atlas consists of 79 human tissue samples measured on an
U133A_v2 gene chip in replicates (Su et al., 2004). Genes expected to function
in immune surveillance pathways were expected to be present in the following
eleven blood-derived samples, including "CD33 positive bone marrow derived
myeloid cells", "CD34 positive stem cells", "BDCA4 positive dendritic cells",
"CD14 positive monocytes", "CD19 positive B cells", "CD56 positive natural killer
cells", “CD71 positive early erythroid cells”, “CD105 positive endothelial cells”,
“CD8 positive T cells”, CD4 positive T cells” and “Whole blood”. For each gene,
an absent/present score was calculated based on expression in the above
samples using the Affymetrix MASS algorithm (max score of 1). If a gene was
present in only one of the two replicates, it was counted as a 0.5 occurrence
(See Table S2, column heading “Blood Present”).

The tissue expression profiles were also log-transformed, and the Pearson
correlation coefficient between genes and that of TLR7 and MyD88 were
calculated. Candidate innate regulators with higher correlation scores were
weighted favorably (See Table S2, column headings “CorrTLR7_Positive” and
“CorrMYD88_Positive”). Expression profiles of both TLR7 and MyD88 showed
differential blood-biased expression; therefore, the two correlation coefficients
are well-correlated (r2 = 0.94). TLRO was not on the array and its expression
profile was not available.



5. Gene Expression Analyses in Response to TLR7/TLR8/TLR9 Stimulation

Previously, HEK293/TLR7 and HEK293/TLR8 stable cell lines were profiled as
three groups, untreated, stimulated through TLR7, or stimulated through TLR8
(unpublished data). For each treatment, the gene expression by microarray
analysis was profiled at 2-hour, 4-hour and 8-hour time points. Fold changes
were first calculated within the TLR7 and TLR8 group as Max/Min among the
three time points; fold change values were then subtracted by the fold change
observed from the untreated group, resulting in a delta fold change (dFC), and
the larger dFC value was kept as an evidence (See Table S2, column heading
“TLR_DeltaFoldChange”). This data set of nine experiments was also analyzed
by an Ontology-based Pattern Identification (OPI) algorithm in order to identify
genes that share both similar expression profiles and similar biological functions
(See Table S2, column headings “OPI_Support” and “OPIl_MicroarraySupport”)
(Zhou et al., 2005). Additionally, previously generated microarray data from CpG
ODN-treated RAW264.7 cells was analyzed (Tross et al., 2009). Gene
expression microarray data was available for cells stimulated at 4-hour or 12-
hour time points, and dFC was calculated as described above (See Table S2,
column heading “FC_CpGODN?”").

Evidence Compilation and Gene Hitpick Criteria

For each gene, we collected a series of supporting evidences using the criteria
described above. All individual evidences were transformed into a normalized
score between zero and one (where zero indicates no support and one indicates
strong support), compiled into an evidence table, and the scores were then used
for candidate hit selection.

To determine which experimental and orthogonal datasets would be most
informative towards identification of relevant innate co-factors, we initially
evaluated each dataset independently for their enrichment of canonical TLR
pathway members. Specifically, the predictive value of a given line of evidence
was quantified by calculating statistical enrichment of known TLR pathway
members utilizing the previously described RSA-like log p-value calculation;
when an evidence was found to have a log p value < 0.2, the evidence was
deemed not predictive, and was eliminated from further analyses. Subsequently,
we evaluated the pairwise correlation coefficients among evidences; when a line
of evidence was highly correlated with another (coefficient > 0.8), the less
predictive evidence was eliminated to reduce redundancy in the evidence pool.
For instance, the siRNA activity scores for the TLR9 and TLR7 screens were
highly correlated, so only the TLR9 siRNA activity score was kept as an
informative line of evidence. Based on these criteria, there were eight remaining
highly informative evidence datasets: direct protein-protein interactions derived
from TLR9 screen data, indirect protein-protein interaction derived from TLR9
screen data, gene expression in myeloid or lymphoid cells or tissues, tissue
expression correlation with TLR7, gene expression fold change analysis in



response to TLR7/8 stimulation, two quantitative measures of the microarray OPI
clusters, and siRNA activity score in the TLR9 screen (See Table S2, column
headings “TLR9_UnfilteredNet_Direct,” “TLR9_UnfilteredNet_Direct,”
“BloodPresent,” “CorrTLR7_Positive,” “TLR_DeltaFoldChange,” “OPIl_Support,”
“OPI_MicroarraySupport,” and “TLR9,” respectively).

Next, a genetic algorithm was applied to assign weights to these informative lines
of evidence (Goldberg, 1989). Briefly, twenty independent search processes,
each with 1000 iterations, were initiated by initially assigning random weights to
each line of evidence. Each iteration aimed to optimize the weights by improving
upon the best weight obtained in the previous iteration, so that the calculated
linear combination scores could produce ranked gene lists where more known
(canonical) pathway members were included in the top 250 positions, out of more
than 1500 positions. Genes that were ranked consistently highly (ie. within the
top 250 positions) by at least five out of the twenty search processes tended to
be the ones reliably supported by multiple informative evidences, though we
found that many top genes were actually supported by twenty out of twenty
search processes. All genes that were ranked highly were considered favorable
candidates for further prioritization based on their siRNA activity scores, RSA p-
values, or number of protein-protein interactions with TLR pathway members.
The above described automated hit selection process was particularly valuable
because it relies on multiple orthogonal lines of evidence to select genes, and
eliminates user bias from the selection process.

Complementary to this automated hit picking approach, additional genes were
selected for confirmation based solely on their siRNA or their RSA activity
scores, in either the TLR7 screen, the TLR9 screen, or both. By using both the
automated and activity-based ranking criteria, some genes were selected in more
than one list. By removing redundant genes, we obtained a final list of 546
primary hits for gene confirmation studies. Ultimately, 38% of the 546 primary
hits were selected based on the automated hit pick strategy, and 62% were
selected based on siRNA or RSA activity score ranking.

Gene Confirmation

We selected 546 genes based on the above-described evidence optimization
results, and additional genes for the purpose of completeness and comparison.
These genes were further profiled in confirmation studies, where the individual
siRNAs from the original wells, plus additional siRNAs for each gene, were
arrayed and examined by monitoring NF-xB luciferase reporter activity in
response to R848 and CpG. 190 genes containing at least two independent
siRNAs showing an siRNA activity score of 0.4 and below were considered
confirmed. The activity score was based on a non-linear scale where the positive
controls were set to 0.1 and the median of the plate was set to 1.0 (See also
siRNA activity scores and RSA activity scores). These genes were also
determined to be non-toxic, using the previously described criteria (See siRNA
Screening Data Transformation and Primary Hits).



Protein-Protein Interaction Networks, MCODE analysis, and Functional
Enrichment Analyses

To generate the protein-protein interaction networks depicted in Figures S1F and
S1G (Figure 1C), we initially compiled a list of 190 confirmed TLR7/9 co-factors
and 20 known canonical members of the TLR7/9 pathway. These 210 genes
were then used to construct a network (Figure S1F) as described previously
(Konig et al., 2008). Next, additional primary hits were added to the original list
of 210 genes in order to expand the network. The additional primary hits were
selected based on the following criteria: genes that are in TLR7 and TLR9
Network, but not in the TOX network; genes that have TLR7 and TLR9 siRNA
activity scores < 0.5; genes that have hematopoeitic tissue gene expression
absent/present scores > 50% and have Pearson Correlation coefficients > 0.5 for
either TLR7 or MYD88; and genes that directly interact with at least one known
canonical member of the TLR7/9 pathway as well as one confirmed hit. By
applying these criteria, we added another 62 genes (gray nodes) to the original
network (Figure S1F) to obtained the expanded network (Figure S1G, also Figure
1C).

If a network was too complex for visual interpretation, Molecular Complex
Detection (MCODE) analysis was applied to identify densely connected network
components (Bader and Hogue, 2003). All network visualization was based on
Cytoscape (version 2.8.0) (Shannon et al., 2003). Additionally, significance of
these networks (p-value <0.001) was determined by comparing the complexity of
iterative randomized (1000X) networks of the same size.

Functional enrichment analyses were applied to provide biological context for
confirmed genes or other genes that were original screening hits, protein
networks, or MCODE subnetworks. For these analyses, gene ontology data
were collected from multiple sources, including Gene Ontology, GeneGo
process, CORUM, and in-house accumulated manual curations. Statistical
significance of each functional category was scored using the standard
accumulative hypergeometric probability function.

Ligand-profiling of Confirmed Hits

The 190 confirmed hits from the RNAIi analysis were cross-profiled in TLR7,
TLR9, TNFR, TLR5, and IL-1R assays. For the TLR7 assay, siRNAs were
introduced into the HEK293T/TLR7/NF-xB luciferase reporter line and stimulated
with 0.5uM of R848. For the TLR9, TNFR, TLR5, and IL-1R assays, siRNAs
were introduced into HEK293T/TLR9/NF-«B luciferase reporter line and
stimulated with 3uM of CpG oligonucleotides, 10ng/ml of TNF-a, 100ng/ml of
flagellin, and 10ng/ml of IL-1B, respectively. For each assay, activity data were
normalized and scaled using the same process as described before. Slightly
different activity thresholds were determined for each assay to capture the
variations in signal distributions; we chose 0.6 (TLR7), 0.6 (TLR9), 0.45 (TNFR),
0.5 (TLRS), and 0.65 (IL-1R), respectively, to be the thresholds. Genes with
activity scores below the individual thresholds were considered active, and genes



with activity scores above the thresholds were considered inactive. The activity
profiles were then hierarchically clustered and mechanisms of hits were assigned
based on the heat map visualization and on the known downstream pathway
circuitry for each receptor interrogated. siRNAs that were active only in both
TLR7 and TLR9 and inactive in TLR5, IL1R, and TNFR were categorized as
“TLR7/9 Specific’; siRNAs that were active in TLR7, TLR9, TLR5 and IL-1R but
inactive in TNFR but were categorized as “MyD88-dependent Signaling”;
siRNAs that were active in TLR7, TLR9, TLR5, IL-1R, TNFR, were categorized
as “General NF-xB Activity”. Using this approach, 80 hits were assigned
mechanisms. For 110 genes, we were unable to assign a categorization, as
these specific genes did not display activities that were discernable between
ligands and/or not consistent with currently known pathway circuitries.

Support-Vector Machine (SVM) for Functional Activity Prediction

Out of 190 confirmed hits, 85 confirmed co-factors and 20 known pathway
members formed a statistically significant protein network (See Figure S1F).
Among these 85 co-factors, our ligand cross-profiling studies (see above)
assigned 18 proteins as “TLR7/9 Specific’ genes, 5 proteins as “MyD88-
dependent Signaling” genes, and 19 proteins as “General NF-xB Activity” genes.
Forty-three out of these 85 confirmed genes were not assigned a mechanism;
nevertheless, they are still connected to known TLR pathway members within the
network (Oda and Kitano, 2006); therefore, the interaction of these genes within
the network was further assessed. Specifically, these genes were placed within a
matrix, where each row represents a confirmed gene, each column represents a
pathway member, and each cell represents the closeness of interactions
between the two proteins. The closeness of the confirmed gene and the pathway
member can be calculated by using the formula: closeness score = 0.5, where
n equals to the number of connections between the confirmed gene and the
known pathway member. For example, if the confirmed gene and the pathway
member directly interact (one connection) the closeness score is 1.0. When we
compared to genes assigned “General NF-kB Activity”, genes assigned as
“TLR7/9 Specific’ are statistically significantly closer to upstream pathway
components UBE2N (p-value = 0.09) and also to MAP3K7IP2 (TAB2) (p-value =
0.05), indicating that we could reliably use the network architecture to predict
possible molecular intersections between identified innate signaling regulators
and known components of the TLR pathway. The complete closeness matrix was
then used as the featured matrix for two-class support-vector machine (SVM)
training. A three-fold cross validation test indicated a prediction accuracy of 71%
for “TLR7/9 Specific” genes and 65% for “General NF-xB Activity” genes using
SVM. We then applied the trained classifier to assign predictive activity labels to
the 43 confirmed genes that were not previously assigned. Using this approach,
17 of the 43 genes were classified as “TLR7/9 Specific”, 21 of the 43 genes were
classified as “General NF-xB Activity”, and 5 remaining genes were unable to be
classified. The predictions were then incorporated into the cellular map of TLR7/9
signaling (Figure 2) based on literature curation and also on predicted protein



interactions derived from the networks in Figures S1F and S1G (see also Table
S6).

Luciferase and Cytotoxicity Assays

All luciferase reporter activities were quantified with Britelite Plus (PerkinElmer).
For the cytotoxic assay, HEK293T/TLRO/NF-kB luciferase reporter cells were
transfected with siRNA. Three days post transfection, viability of the cells was
quantified with ATP Lite (PerkinElmer). Both the luciferase assay and cytotoxic
assay were quantified by using the PHERAstar luminometer (BMG Labtech).

Evaluation of TLR Mutant Signaling in HEK293T

HEK293T cells were transfected with WT-TLR9-HA or mutant TLR2, TLR7, or
TLR9 MSCV2.2 retroviral vectors, as well as an NF-«B luciferase reporter
plasmid where luciferase expression was driven by an endothelial leukocyte
adhesion molecule 1 (ELAM-1) promoter (Whelan et al.,, 1991). Twenty-four
hours after transfection, cells were stimulated for 14h with TLR or reference
ligands, as described. Cell lysates were obtained using passive lysis buffer
(Promega) and assayed for luciferase activity.

RNA interference

Double stranded RNA duplexes were purchased from Qiagen. The targeting
sequences were as follows: MyD88, 5-CATCCTGAGTTTATAATAATA-3’; p65,

5-CGGATTGAGGAGAAACGTAAA-3’; UNC93B1,
CTGCCCGACATCGACAGCAAA; RIG-I, AACGTTTACAACCAGAATTTA; GL-3
luciferase, 5-AACTTACGCTGAGTACTTCGA-3’; PDK2-1,

TAGGTCTGTGATGGTCCCTAA; PDK2-2, CACAGTAAAGAGGAGACTGAA;
PDK2-3, CCACGTACCGCGTCAGCTA; PDK2-4, CAACGTCTCTGAGGTGGTC;

HRS-1, CACGTCCGGAGTAACACTACA; HRS-2,
GCACGTCTTTCCAGAATTCAA; HRS-3, CCGGAACGAGCCCAAGTACAA;
HRS-4, TACGAGCAGCTGAACAGGAAA; FBXL7-1,
ATGGGCGCGAACAATGGCAAA; FBXL7-2, AAGGTCTCACTAGGAAATTTA;
FBXL7-3, UCAGGAUGCUCCAAAGUGA; FBXL7-4,
GTCTCAGGCTGTTACAATA. Four siRNAs directed against TLR7 were pooled:
TLR7-1, ATGGTATGCCTCCAAATCTAA; TLR7-2,

CTGGAGGTATTCCCACGAACA; TLR7-3, TAACCTCTCGCCATTACATAA;
TLR7-4, CAGACCTTGGATCTAAGTAAA. siRNA sequences for additional
TLR7/9 co-factors can be found in Table S7. Negative control siRNAs were
previously described (Konig et al., 2008). HEK293T and THP-1 cells were
transfected via Lipofectamine RNAIMAX (Invitrogen) and Hiperfect (Qiagen),
respectively, according to the manufacturers’ protocols. 72 hours post-
transfection, the cells were used for further experiments.



Real-Time PCR

Total RNA from cells was extracted by using RNeasy Mini Kit according to the
manufacturer’s instructions (Qiagen). RNA samples were reverse transcribed
using the QuantiTect Reverse transcription Kit (Qiagen). PCR products were
detected using the Power SYBR® Green PCR Master Mix (Applied Biosystems).
Formation of a unique DNA product was confirmed by verifying that products had
a single melting temperature. Fluorescence monitored PCR values were
normalized to TATBP values to account for any differences in cDNA recovery
between samples. RT-PCR was performed with the following primers amplifying
human genes: TATBP, 5-CCACTCACAGACTCTCACAAC-3 and 5'-

CTGCGGTACAATCCCAGAACT-3’; ICAM-1, 5-
TGGCCCTCCATAGACATGTGT-3' and 5-TGGCATCCGTCAGGAAGTG-3’;
HRS, 5- TTCGAGCGTCTCCTAGACAAG-3 and 5-
GCAAAATGGACTCCCAATCTGT-3'; IL-8, 5'-
TTTTGCCAAGGAGTGCTAAAGA-3 and 5- AACCCTCTGCACCCAGTTTTC-3’;
RIG-I, 5-AAAGCCTTGGCATGTTACAC-3' and 5'-
GGCTTGGGATGTGGTCTACT-3'; MyD88, 5-CGACACTGCTGGGGCAGCTT-3'
and 5-TGCTTCCCCACCTGCCCTGT-3 IFN-o, 5'-
CTGAATGACTTGGAAGCCTG-3' and 5- ATTTCTGCTCTGACAACCTC-3
TNF-a., 5-AGTGAAGTGCTGGCAACCAC-3' and 5'-
GAGGAAGGCCTAAGGTCCAC-3; rps11 5-GCCGAGACTATCTGCACTAC-3'
and 5-ATGTCCAGCCTCAGAACTTC-3 UNC93B1, 5-
TGCTCACCTACGGCGTCTA-3' and 5-GATGGGAGTCACGTTGATGC-3’;
ZNF700, 5-CAGGAAGAGTGGACATTGCTG-3' and 5-
AATGGATGGGCGATACCTGAA-3’; UQCRCH1, 5'-
GGGGCACAAGTGCTATTGC-3’ and 5-GTTGTCCAGCAGGCTAACC-3’;
UNC13D, 5-TCTACGAGGACGCACTCTACA-3’ and 5'-
GGCCTCCGTCACATGGTTG-3'; HIST1H2BO, 5-
GACCCGGCTAAATCTGCTCC-3° and 5-GGCCTTGGTTACGGCTTTC-3’;
CTSLA1, 5-CTTTTGCCTGGGAATTGCCTC-3’ and 5-
CATCGCCTTCCACTTGGTC-3'; PDK2, 5-CGCCCAAGTACATAGAGCACT-3
and 5-GGAAGCAGGTTGATCTCTTTCA-3'; FBXL7, 5'-
GATCACACGCCCACTAAAGC-3 and 5-CATGCTCAGGTCGGAGTCTTC-3);
TLR7, 5-AGAACCATGTGATCGTGGACT-3’ and 5-

TGTTCGTGGGAATACCTCCAG-3'.
High Content Imaging of p65 Nuclear Translocation

The cells labeled for p65 nuclear translocation were imaged using the Opera
(PerkinElmer), an automated confocal microscope, using 488nm and 635nm
laser lines to excite Alexa488 immunolabeled p65 and Draqg5, respectively. A
total of 18 fields of view were collected from each well (covering on average
~7,200 cells/well) at a resolution of 0.66um/pixel using an LCPlanFL 20x/0.40na
Objective (Olympus). Images were analyzed using a custom Acapella
(PerkinElmer) script available on Google.Code at:



http://code.google.com/p/operahci/source/browse/#svn%2F Acapella%2FAcapell
aScripts%2Ftrunk%2FGNF.Scripts%2FNuclearTranslocation.

In brief, the script was parameterized to detect nuclei and cytoplasm using the
Drag5 stain. A donut limited by the cell cytoplasm was then drawn. For each cell
donut a Pearson correlation coefficient was calculated between labeled p65 and
labeled Nuclei (Drag5). Cells with a Pearson correlation >0.2 were classified as
translocated and well signal defined as the median value of their Pearson
correlation coefficient was used to establish whether the siRNA affected p65
nuclear translocation or not. p65 nuclear translocation was considered impaired
if the well signal is 4 standard deviations lower than the average of the negative
controls. For some genes where the state of p65 nuclear translocation was
ambiguous, images from replicate wells were evaluated visually.

Intracellular Staining of TNF-a

2 x 10° immortalized macrophages were plated on 24-well plates. The following
day, cells were stimulated; 30 minutes after stimulation cells were treated with
brefeldin A. Six hours after stimulation cells were fixed using the BD
Cytofix/cytoperm kit according to the manufacturer’'s instructions. Cells were
stained with aTNF-PE clone MP6-XT22