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1. Molecular and cell biological pathways of NET formation 3 

1A. NET formation as a consequence of regulated cell death 4 
Hans-Joachim Anders, Jyaysi Desai & Daigo Nakazawa, Munich, Germany 5 
 6 
NET formation implies the release of chromatin decorated with cytoplasmic proteins, a 7 

process that has been documented to occur without nuclear and plasma membrane ruptures 8 

and immediate neutrophil death under certain conditions. In many cases, however, the same 9 

NET-like structure is the consequence of neutrophil necrosis involving the rupture of nuclear 10 

and plasma membranes and a release of decondensed chromatin together with cytoplasmic 11 

content into the extracellular space [1, 2, 3, 4, 5]. Distinguishing the two processes is reliably 12 

possible only with ultrastructural or live cell imaging using morphological criteria of 13 

membrane rupture and cell viability. In contrast, dissecting the type of neutrophil necrosis is 14 

not possible by morphological criteria [6]. According to the current recommendations by the 15 

cell death community the type of cell necrosis can only be defined by identifying one of the 16 

several signaling pathways leading to regulated cell necrosis such as necroptosis, 17 

pyroptosis, ferroptosis, parthanatos, etc [7]. This requires the use of selective signaling 18 

pathway antagonists or targeted deletion of critical pathway elements in neutrophils. Current 19 

evidence suggests that PMA (2-hour stimulations) and crystal-induced NET formation 20 

involves the RIPK1/RIPK3/MLKL-dependent pathway of necroptosis [8, 9]. Other triggers 21 

might involve other pathways of regulated neutrophil necrosis. NET formation may also occur 22 

as a consequence of passive neutrophil necrosis not involving any specific signaling 23 

pathways, e.g. histone-related cytotoxicity due to positive charge-dependent plasma 24 

membrane rupture [10]. As histones are released during NET formation massive NET 25 

formation likely involves both passive necrosis and regulated necrosis affecting different cells 26 

or even identical neutrophils in the same microenvironment [11]. 27 

 28 
 29 
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1B. Neutrophil cytolysis vs NETs in the study of human disease 30 
Felipe Andrade, Baltimore, USA 31 
 32 
Decades before the description of NETs, necrotic cells were recognized as a source of 33 

extracellular DNA and associated histones [12]. The extracellular release of nuclear material, 34 

once used as a marker of cytolysis [13], is now considered a hallmark of NETs. Initial efforts 35 

focused on dissecting NETs from unique forms of cell death [14, 15]. However, the lack of 36 

rigorous criteria used to define NETs has led to the practice of defining any process involving 37 

the release of nuclear and cytoplasmic material from neutrophils [16, 17, 18, 19, 20], 38 

regardless of the driving mechanism, as NETs. The limited specificity to define NETs, the 39 

shortage in the use of proper controls, and potential differences in NET inducing pathways 40 

between mice and humans, among other possible caveats, have likely overstated the role of 41 

NETs in disease. In rheumatoid arthritis (RA), for example, accumulating evidence has 42 

suggested that citrullination in NETs is a major source of citrullinated autoantigens in both 43 

humans and experimental arthritis [18, 21]. However, several studies have also questioned 44 

the need for citrullination in the formation of NETs by human neutrophils [22, 23, 24, 25]. 45 

Potential inconsistencies in the relationship between citrullination, NETs and disease in the 46 

human model may have resulted from the study of other PAD activating mechanisms of 47 

neutrophil damage or death that may have been mistaken as NETs [24]. The lack of stringent 48 

controls to define the magnitude and immunogenic consequences of citrullination in NETs 49 

may have also contributed to this paradox [26]. 50 

Cytolysis induced by host (i.e. perforin and complement) and bacterial (i.e. toxins) pore-51 

forming proteins (PFPs) is a self-defense mechanism commonly used by immune cells and 52 

virulent bacteria, respectively, to target unwanted cells [27]. Like PFPs, the formation of 53 

discrete pores in the neutrophil plasma membrane (using electropermeabilization) promotes 54 

extracellular release of nuclear DNA decorated with MPO, demonstrating that nonspecific 55 

cytolysis induces neutrophil changes, currently indistinguishable from NETs [28]. Unlike 56 

NETs, however, PFPs induce prominent calcium influx that hyperactivates PADs generating 57 

neutrophil hypercitrullination (a process termed leukotoxic hypercitrullination, LTH), which is 58 
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likely used by virulent bacteria to inactivate neutrophils [24, 29]. The generation of the RA 59 

citrullinome is more likely explained by LTH, not by NETs [24, 29, 30]  60 

Additional problems in the study of NETs in health and disease include the assumption that 61 

neutrophils are the only cells that release nuclear material upon death, and that NETosis is 62 

the only form of cell death in neutrophils. Thus, although all nucleated cells contain 63 

chromatin, studies have quantified free dsDNA or chromatin in serum as surrogates to 64 

measure NET production in vivo [17, 19, 31, 32]. Similarly, while multiple stimuli can induce 65 

histone citrullination and neutrophils are not the only cells that can citrullinate [24, 29, 33, 34], 66 

detection of citrullinated histones has also been used as specific markers to quantify NETs 67 

[31, 35]. More recently, the detection of soluble complexes of DNA and neutrophil-derived 68 

proteins, such as myeloperoxidase (MPO) and neutrophil elastase (NE), have been used to 69 

increase the specificity of NET quantification in vivo [32]. However, although NETs can be a 70 

source of MPO/NE-DNA complexes, the specificity of these findings in relation to other forms 71 

of neutrophil death has never been challenged. Almost any form of cell death in neutrophils 72 

(such as apoptosis, necrosis, LTH, and necroptosis, among others) can develop secondary 73 

necrosis and release intracellular material [29, 36]. Indeed, nonspecific cytolysis promotes 74 

extracellular release of nuclear DNA decorated with MPO [28]. Thus, similar to other NET 75 

detection assays, the specificity of soluble MPO/NE-DNA complexes as markers of NETs 76 

fully relies on the assumption, but not experimental evidence, that no other biological 77 

mechanism could mimic this process. The use of non-specific markers to detect and quantify 78 

NETs in vivo may explain the growing number of mechanisms and diseases that have been 79 

linked, in some cases erroneously, to NETs [24]. Defining markers of distinct mechanisms of 80 

neutrophil activation and damage should therefore be a high priority to truly understand to 81 

role of NETs in health and disease. 82 

 83 

 84 

 85 
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1C. PAD4 and NET Release 86 
Marko Z Radic & Indira Neeli, Memphis USA, and Nishant Dwivedi, Boston, USA 87 
 88 
Peptidylarginine deiminase IV (PAD4), the enzyme which converts arginine residues into 89 

citrulline residues, is relevant for two important reasons.  One is that PAD4 modifies a variety 90 

of human autoantigens which, due to the newly introduced citrulline, become preferential 91 

targets of autoimmune responses. The second is the fact that PAD4 performs essential 92 

functions that mediate the classical (nuclear) form of NET release.  Neeli et al. showed that 93 

various inflammatory stimuli induce histone deimination and identified deiminated histones as 94 

integral components of NETs [37]. Subsequent studies confirmed these observations [38] 95 

and determined that PAD4 activity is essential for the regulated release of NETs because 96 

extracellular chromatin release is impaired in PAD4-deficient neutrophils [39, 40]. These 97 

results complement the findings that PAD4 inhibitors effectively block NET release [41].  98 

However, the mechanism whereby PAD4 contributes to NET release is not clear. One 99 

possibility is that PAD4 makes an essential contribution toward NET deployment by 100 

converting arginine residues in histones into citrulline residues. By doing so, PAD4 removes 101 

the positive charge from the amino termini of core histones and diminishes the attractive 102 

forces between histones and DNA.  As result, histone deimination loosens the structure of 103 

chromatin [38]. A similar transition may provide the force that expands the nucleus and 104 

ultimately ruptures the nuclear envelope to release NETs.  105 

Multiple stimuli that lead to NET release and the potential variety of forms of NETs make it 106 

difficult to establish the signaling pathways that participate in the activation of PAD4.  Signals 107 

from Gram-negative bacteria, including lipopolysaccharide acting on the Toll-like receptor 4, 108 

may transmit signals via MyD88 and its associated catalytic subunits to IRAK1 [42]. Through 109 

the activation of distinct IKK subunits, the pro-inflammatory axis of NFkappaB is engaged, 110 

leading via MEK1 to the further activation of ERK1 and 2.  Alternatively, FcgammaRIIIb, 111 

acting via TAK1, leads to the activation of ERK1/2 [43].  Additional feed-forward signals may 112 

involve activation of G-protein-coupled receptors that induce PLCgamma to form its 113 

messenger IP3, followed by calcium release from endogenous ER stores [44]. Alternatively, 114 



 
5 

 

a calcium-activated potassium channel may directly engage signals leading to NET formation 115 

[22].  Calcium could act as an additional signal by activating PKC subunits, which have been 116 

shown to have a direct effect on NET release. Experiments by Neeli and Radic revealed an 117 

unexpected complexity of PKC contributions to NETosis [25].  Experiments with an inhibitor 118 

of classical PKC, chelerythrine, as well as a structurally related compound, sanguinarine, 119 

demonstrated that classical PKC enzymes may block activation of PAD4, yet an atypical 120 

PKC, most likely PKCzeta, exerts an activating role upstream of PAD4 [25]. The opposing 121 

effects of two PKC isoforms argue for very precise regulation of PAD4 in neutrophils. 122 

Through as yet incompletely understood mechanisms, these enzymes contribute to the 123 

disruption of granule and nuclear membranes, chromatin relaxation and, ultimately, NET 124 

release.  125 

  126 

1D. Externalization of mitochondrial DNA. 127 
Shida Yousefi, Darko Stojkov Poorya Amini & Hans-Uwe Simon, Bern,Switzerland 128 
 129 
Despite vast numbers of publications describing NET formation, very little is known about the 130 

molecular mechanisms underlying this function of granulocytes which is so important for 131 

microbial defense. Physiological stimulation of granulocytes by cytokines, complement, 132 

adhesion molecules, or toll-like receptors leads to formation of extracellular traps containing 133 

mainly mitochondrial DNA (mtDNA) and granule proteins [45, 46, 47, 48, 49, 50, 51, 52, 53, 134 

54, 55]. Our studies on the molecular mechanism have shown that extracellular DNA trap 135 

formation by neutrophils [45, 53], eosinophils [50, 52, 56], and basophils [49, 54] in our 136 

hands does not require their death as previously suggested [15]. Hence, granulocytes remain 137 

viable after mtDNA release [45, 49, 50, 52, 53, 54, 57]. Furthermore, in contrast to another 138 

report [9], we found no evidence for the involvement of the RIPK3-MLKL pathway [45]. 139 

Moreover, genetic deletion of ATG5 correlated with defective autophagy, but elicited no 140 

defect in extracellular trap formation either in neutrophils or in eosinophils [58]. Recently, we 141 

reported that pharmacological inhibition of the cytoskeletal dynamics or the depletion of 142 

genes in neutrophils regulating the cytoskeleton prevents degranulation and mitochondrial 143 
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DNA release required for NET formation [59]. Furthermore, we have recently demonstrated 144 

that glycolytic ATP production is required for microtubule network assembly and NET 145 

formation [60]. While both neutrophils [45, 53] and eosinophils [50, 52] required a functional 146 

NADPH oxidase for DNA trap formation, basophils did not [49]. 147 

We demonstrated that extracellular DNA traps contain mtDNA also in vivo under pathological 148 

conditions. For instance, we have addressed the question whether eosinophils and 149 

neutrophils infiltrating the airways in asthmatic patients produce extracellular DNA traps 150 

consisting of mtDNA and granule proteins. This was indeed the case and was supported by 151 

the observation that the mitochondrial ATP6 gene signal was readily detectable in 152 

extracellular DNA traps released by eosinophils infiltrating the tissue. The GAPDH gene 153 

signal was selectively seen only in nuclei [46]. Taken together, granulocytes are able to kill 154 

pathogens in the extracellular space by the release of mtDNA together with granule proteins. 155 

 156 

2. Physiological and pathophysiological aspects of NETs 157 

2.A Interplay between bacteria and NETs 158 
Maren von Köckritz-Blickwede, Hannover, Germany & Victor Nizet, San Diego, USA 159 
 160 
The original discovery of NETs revealed a phenomenon wherein microbial pathogens such 161 

as Staphylococus aureus or Listeria monocytogenes efficiently induce the release of DNA-162 

based structures from human neutrophils [14]. Beginning shortly thereafter, evidence for a 163 

key innate host defense function of NETs accumulated from studies manipulating the 164 

microbial side of the host–pathogen equation. Several pathogens were shown to express 165 

virulence determinants that conferred resistance to NET-based antimicrobial killing, including 166 

nucleases that degrade NET architecture, as shown Gram-positive pathogens such as 167 

Streptococcus pyogenes [61], Streptococcus pneumoniae [62], S. aureus [63], and 168 

Streptococcus suis [64] as well as Gram-negative pathogens such as Yersinia enterocolitica 169 

or Vibrio cholera [65]. Other pathogens resistance intrinsic antimicrobial effectors of NETs 170 

such as histones and cationic defense peptides, e.g. the M1 protein of S. pyogenes [66, 67] 171 

or the suppression of NET production through engagement of inhibitory neutrophil receptors, 172 
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e.g. Siglec-9 by Streptococcus agalactiae [68] and Pseudomonas aeruginosa [69] or 173 

elaboration of neutrophil cytotoxins such as Bordetella pertussis adenylate cyclase (Ref) or 174 

S. pyogenes streptolysin O (SLO) [70].  175 

The exact molecular mechanisms that drive entrapment and killing of the microbes within 176 

NETs are still not completely understood. Upon disruption of NETs with DNase or 177 

DNase/proteinase mixtures, the extracellular antimicrobial capacity of neutrophils or other 178 

ET-releasing cells is reduced. It has been postulated that electrostatic interactions between 179 

cationic components of NETs (e.g. histones) and the anionic surface of microorganisms [71] 180 

or even the DNA itself [72] play a role in this process. Specific factors such as the 181 

antimicrobial peptide cathelicidin LL-37 [73] or calprotectin [74] contribute to the antimicrobial 182 

capacity of NETs; however, since most cationic peptides or proteins lose killing capacity 183 

when bound to DNA, it may be that NETs primarily serve to ensnare pathogens near a high 184 

concentration gradient of antimicrobial effector molecules accumulating from the activated 185 

immune cells. 186 

For proof of a protective role of NETs, in vivo data are essential.  Of note, there are well 187 

documented differences between the amount and morphology of NET formation in vitro 188 

versus in vivo in response to certain pathogens. Thus, more in vivo-related NET data are 189 

needed using specific immunofluorescence-based NET-probes. Improvements in in vitro 190 

model systems for studying pathogen-NET-interaction that reflect in vivo physiological 191 

relevant conditions are also a priority. As an example, release of NETs by neutrophils is 192 

significantly altered under hypoxic oxygen conditions [75], a situation that predominates in 193 

tissues during infection or inflammation, aggravated by overconsumption of oxygen by 194 

pathogens and recruited immune cells. 195 

S. aureus is one pathogen shown to be entrapped and partially killed by NETs not only in 196 

vitro but also in vivo. Berends et al. [63] showed that S. aureus degradation of NETs 197 

contributes to acute pneumonia in mice, and Yipp et al. [76] revealed anti-bacterial NETs 198 

produced by chemotactically active neutrophils during S. aureus skin infection.  199 
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Correspondingly, pharmacological agents that boost NET production in vitro, such as statins 200 

or tamoxifen, increased S. aureus clearance during systemic infection models [77, 78]. 201 

Conversely, another Gram-positive pathogen, S. pneumoniae, appears highly resistant to 202 

NET-mediated killing in vivo. For example, primary influenza A infection of the middle ear 203 

boosts formation of NETs by infiltrating neutrophils, and resistant S. pneumoniae can use 204 

those NETs to augment biofilms and persist during otitis media [79]. Branzk et al. [80] 205 

presented a hypothesis that bacterial particle size is a key mediator of NET versus 206 

phagocytosis-mediated killing of pathogens, such that neutrophils selectively release NETs in 207 

response to larger pathogens. Ultimately, it will depend on the pathogen, its array of immune 208 

resistance factors, and the anatomical site of infection, as to whether NETs can provide an 209 

immune defense function for the host [81].  210 

 211 
2.B Barrier function of neutrophil extracellular traps 212 
Rostyslav Bilyy & Tetiana Dumych, Lviv, Ukraine 213 
 214 
Neutrophils form neutrophil extracellular traps (NETs) of decondensed DNA and histones 215 

that trap and immobilize pathogens like bacteria as well as particulate matter, which cannot 216 

be removed from the body. Examples of the latter can be natural crystals of monosodium 217 

urate formed during gout [82] or man-made nanoparticles with which the body comes in 218 

contact but can neither degrade nor remove (like nanodiamonds or polystyrene 219 

nanoparticles) [83]. During some acute inflammatory conditions, involving internal organs, 220 

like acute necrotizing pancreatitis massive tissue necrosis occurs, which is organized as 221 

pancreatic pseudocysts [84]. In contrast to regular cysts, these pseudocysts are not 222 

surrounded by epithelial layers. Recently we investigated necropsy samples of internal 223 

organs of 2 patients with acute abdominal inflammation, revealing areas of the interface 224 

between intact and necrotizing tissue. Immunohistochemical analysis has demonstrated that 225 

necrotic areas observed in necrotizing pancreatitis and peritonitis are isolated from the 226 

surrounding healthy tissues by aggregated NETs. Between the areas of viable tissues and 227 

those destroyed by necrosis we found a distinct condensed tissue layer stained positive for 228 
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extracellular DNA (PI), neutrophil elastase and citrullinated histone H3, and may, therefore, 229 

be considered NET-derived. Neutrophils undergoing different stages of NET-formation were 230 

observed between this shielding layer and viable tissue, which was also infiltrated by 231 

neutrophils [85]. A condensed layer of aggregated NETs thus spatially shields and isolates 232 

the site of necrosis, thereby limiting the spread of necrosis-associated proinflammatory 233 

mediators. We propose that necrotic debris may initiate and/or facilitate the formation of the 234 

NET-based surrogate barrier. 235 

 236 
2C. The role of NET-formation in resolution of inflammation  237 
Markus Hoffmann, Christine Schauer, Christiane Reinwald & Jonas Hahn, Erlangen, 238 
Germany 239 
 240 
While there are numerous studies showing that NETs contribute to auto-immune 241 

inflammation and cause bystander tissue injury, an impairment of NET-formation can also be 242 

associated with exacerbation and/or chronification of autoimmunity and inflammation. Hence 243 

in a mouse model of gouty arthritis, depletion or genetic deficiency of neutrophils or 244 

impairment of NET-formation led to chronification of joint inflammation [82, 86]. Also in 245 

models of SLE and drug-induced lupus, mouse strains that cannot form NETs exhibited 246 

exacerbation of autoimmunity [87, 88]. The outcome of a deficiency of NET-formation in 247 

humans can be observed in individuals with chronic granulomatous disease (CGD) and 248 

Papillon-Lefèvre syndrome (PLS). In CGD ROS-dependent NET-formation is impaired due to 249 

mutations in the NADPH oxidase complex 2 [89]. Individuals with CGD suffer not only from 250 

recurring bacterial and fungal infections, but are also prone to develop autoimmune 251 

syndromes [90]. In PLS NET-formation is compromised by a mutated Cathepsin C that 252 

renders neutrophil serine proteases (NSP) inactive. Subjects with PLS are characterized by 253 

hyperactivation of neutrophils resulting in exaggerated and non-resolving inflammation, 254 

especially in the oral cavity and the skin [91]. Since these are not caused by an increased 255 

susceptibility towards bacterial infections [92, 93], other functions of NSPs than their 256 

antimicrobial action must promote regulation of inflammation [94]. 257 
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As a mechanism for the anti-inflammatory effects of NETs, degradation of inflammatory 258 

mediators by NET-inherent proteinases was suggested [82, 86, 87, 95]. Thus, while in low 259 

neutrophil densities (e.g., in peripheral blood) the pro-inflammatory roles of NETs 260 

predominate, in high neutrophil densities (e.g., inflammation sites) the local removal of 261 

cytokines and chemokines by aggregated NETs works as a built-in safeguard to interrupt the 262 

self-amplifying loop of cell- activation and recruitment in neutrophilic inflammation [95, 96, 263 

97]. 264 

 265 
2D. Neutrophil-derived proteases and cytokine processing 266 
Danielle M. Clancy, Ghent and Seamus J. Martin, Dublin 267 
 268 
Neutrophil serine proteases cathepsin G, elastase and proteinase-3 have classically been 269 

viewed as antimicrobial enzymes, eliminating invading pathogens during phagocytosis 270 

through degradation of the latter within phagolysosomes. Activated neutrophils are also well 271 

known to release their granule proteases extracellularly via degranulation and the formation 272 

of NETs. However, it is unclear what beneficial physiological role neutrophil proteases play in 273 

the extracellular space, as the excessive release of these enzymes has been linked with 274 

local tissue damage and inflammation in surrounding healthy tissue [98, 99, 100, 101]. 275 

However, accumulating evidence now suggests that neutrophil proteases play an important 276 

role in the processing of cytokines and chemokines to modulate and amplify inflammatory 277 

responses. Indeed, mice deficient in cathepsin G, elastase and proteinase-3 display robust 278 

protection against a range of inflammatory insults, including endotoxic shock [102, 103]. 279 

Neutrophils are rapidly mobilized to sterile inflammatory sites by endogenous factors 280 

released from damaged cells known as damage-associated molecular patterns (DAMPs). 281 

Although multiple putative DAMPs have been identified, the IL-1 cytokine family have been 282 

proposed to serve as the canonical DAMPs due to their ability to promote robust 283 

inflammatory responses from a wide range of cell types [104]. A key feature of IL-1 family 284 

cytokines is their requirement for N-terminal proteolytic processing to achieve their fully 285 

active state. Multiple studies have now demonstrated that neutrophil serine proteases, 286 
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released extracellularly at sites of infection or injury, modulate the activity state of multiple IL-287 

1 cytokines and robustly enhance the activity of IL-1α, IL-33, IL-36α, IL-36β and IL-36γ [98, 288 

105, 106, 107, 108]. NETs act a source of active proteases, increasing their local 289 

concentration by preventing their diffusion into surrounding tissues. Cathepsin G, elastase 290 

and proteinase-3 are externalised on NETs and can process and activate IL-1α and IL-36 291 

cytokines, suggesting that NETs can serve as platforms for extracellular cytokine activation 292 

[109]. In addition, neutrophil-derived proteases modulate chemotaxis, inflammation and 293 

adaptive immunity by regulating the activity of other pro-inflammatory cytokines and 294 

chemokines including IL-8, CCL15, RANTES and TNFα, thereby exquisitely fine-tuning 295 

inflammatory responses [110, 111]. Thus, in addition to their classical role as antimicrobial 296 

phagocytes, neutrophils play a key role in amplifying inflammation through deployment of 297 

their granule proteases. Consequently, neutrophil proteases represent attractive therapeutic 298 

targets in autoimmune and inflammatory diseases, particularly those driven by IL-1 family 299 

cytokines. 300 

 301 
2E. NETs in rheumatologic diseases  302 
Mariana J. Kaplan, Bethesda, USA & Jason S. Knight, Ann Arbor, USA 303 
 304 
In patients with rheumatologic diseases, there is evidence that NETs are responsive to key 305 

environmental triggers, serve as sources of autoantigen, perpetuate and amplify 306 

autoimmunity, and mediate organ damage. The role of NETs has been best characterized in 307 

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), anti-neutrophil cytoplasmic 308 

antibody-associated vasculitis (AAV), and antiphospholipid syndrome (APS), all of which will 309 

be briefly discussed here. 310 

Environmental exposures linked to rheumatologic diseases have been found to induce NET 311 

formation [112, 113].  Similarly, several drugs that are important inducers of autoimmunity 312 

cause robust NET formation and autoantibody responses to NET components [114, 115].  313 

Proteins found within NETs represent some of the most important autoantigenic targets in 314 

rheumatologic diseases. These include double-stranded DNA and histones in SLE [116]; 315 
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citrullinated vimentin, α-enolase, and histones in RA [18, 117]; and myeloperoxidase and 316 

proteinase 3 in AAV [118].  While beta-2 glycoprotein I (APS) has yet to be demonstrated in 317 

NETs, it is present on the surface of neutrophils and a well-established DNA-binding protein 318 

[119, 120]. Several mechanisms contribute to perpetuation of autoimmunity by NETs. NET-319 

specific autoantibodies protect NETs from degradation and recruit complement components 320 

to NETs [116, 121, 122, 123, 124], potentially amplifying their immunostimulatory potential. 321 

NETs [20, 125, 126], and especially oxidized mitochondrial DNA [47], trigger cytokines such 322 

as type I interferons that predispose to autoimmunity [127]. NETs also trigger inflammasome 323 

activation [128]. While disease-specific autoantibodies directly trigger NET release [18, 47, 324 

118, 120, 125, 126], rheumatologic diseases, and especially SLE, favor the emergence of an 325 

inflammatory subset of neutrophils known as low-density granulocytes (LDGs) [20, 129].  326 

LDGs have a significantly diminished threshold for NET release, with those NETs containing 327 

abundant oxidized DNA [47]. Beyond SLE, LDGs have also been described in AAV and APS 328 

[47, 130, 131]. 329 

A neutrophil signature predicts disease flares in SLE and AAV [130, 132]. Armed with 330 

histones and granular enzymes, NETs have significant potential for toxicity. Evidence of in 331 

vivo NET formation in humans has been documented in circulation [18, 47, 118, 120], and in 332 

tissues such as skin (SLE) [20], kidneys (SLE, AAV) [20, 118], synovium (RA) [18], sputum 333 

(RA and first-degree relatives of RA patients) [133], and thrombi (AAV) [134]. The impact of 334 

NETs on the vasculature may be especially important. Examples include the MMP-335 

dependent toxicity toward endothelial cells by SLE NETs [20, 135], and the thrombin-336 

activating potential of AAV and APS NETs [120, 136]. In parallel, NETs may also modify 337 

plasma lipids to make them proatherogenic [137]. 338 

Rheumatologic disease develops at the nexus of genetic predisposition and environmental 339 

exposure, a complexity that is absent from available mouse models. The issue is further 340 

complicated when neutrophils are the focus of study. Mouse neutrophils differ in quantity 341 

(reduced numbers in peripheral blood) and quality (reduced myeloperoxidase and 342 
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defensins), as compared to their human counterparts [138, 139]. Activated neutrophil 343 

subsets such as LDGs have not been defined (and may not be present) in mice. In contrast, 344 

the role of suppressive subsets including myeloid-derived suppressor cells have been much 345 

easier to reveal (and could play a more important role) in mice [140]. Caution must therefore 346 

be exercised when interpreting mouse studies. In some SLE models, inhibition of PADs [141, 347 

142], mitochondrial reactive oxygen species [47], HMGB1 [143], and CXCR2 [144] are 348 

protective, while deletion of NADPH oxidase and myeloperoxidase exacerbate SLE [88, 145, 349 

146]; furthermore, PAD inhibition has not been protective in all SLE models [87, 147]. A 350 

better understanding of the factors required for SLE-specific NET release, as well as the role 351 

of neutrophils subsets in SLE, are required to resolve these discrepancies.  In models of RA 352 

and AAV, NET-loaded synovial fibroblasts (RA) [21], and dendritic cells (AAV) [148], can 353 

trigger disease when transferred into mice. Pharmacologic blockade of PADs and PI3K-354 

gamma interfere with NET release and kidney damage in models of AAV [149, 150]. In APS, 355 

transfer of human antibodies into mice triggers NET release and large-vein thrombosis [151], 356 

a phenotype that is dependent on neutrophil adhesion [152]. Going forward, mouse studies 357 

will surely remain an important part of the field, but we would emphasize the need for 358 

continued guidance by work with patient neutrophils.   359 

 360 

2F. What we have learned about NETs from in vivo studies 361 
Elzbieta Kolaczkowska, Iwona Cichon, Michal Santocki, Krakow, Poland & Paul Kubes, 362 
Calgary, Canada 363 
 364 
Data obtained in vitro (in a test tube) or ex vivo (in body fluids or unfixed tissue) often differ 365 

from results acquired from in vivo settings (within the living organism) due to simplification of 366 

the mimicked condition. These shortcomings include, but are not limited to, a lack of 367 

appropriate substrata to activate signaling pathways through specific adhesion molecules, a 368 

lack of intercellular contact of different cell populations, a lack of the full spectrum of released 369 

factors, anoxia/oxygen levels, a lack of plasma and all its constituents including DNAses and 370 

complement and a lack of shear due to blood flow [153]. In the particular case of studies on 371 
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NETs a significant amount of data differ between in vivo and in vitro results [153]. These 372 

limitations include the fact that NETs are three-dimensional complex structures which can 373 

cover significant areas of tissue or vasculature under flow conditions. Using intravital 374 

microscopy (IVM) to visualize biological processes (such as NET release) in blood and tissue 375 

accurately represents the actual in vivo situation. Despite its power, IVM is not widely used 376 

due to challenging surgery procedures and the necessity of high-tech microscopes. 377 

Nevertheless, whenever possible, intravital imaging of NETs should be applied to verify the 378 

significance of in vitro data in the complex, living organism. Importantly, the converse is also 379 

true, researchers utilizing IVM in mice should verify their in vivo observations to ensure 380 

events occur in human systems. In addition, in vitro allows for more effective examination of 381 

cellular events at super-resolution. 382 

Among the parameters related to NETs which have been confirmed in vitro and in vivo are (i) 383 

the dependency on neutrophil elastase and PAD4 [14, 154], (ii) the ability of NETs to 384 

immobilize pathogens [14, 155], thus reducing dissemination to limit sepsis [155, 156], and 385 

(iii)  the induction of NETs by bacteria, viruses and fungi and their immobilization by web-like 386 

structures [157, 158]. Despite these commonalities, a number of parameters related to NET 387 

formation and function lack agreement. Among these observations are (j) the ability of the 388 

neutrophil to stay alive versus dying after NET release with PMA [76], (jj) the requirement of 389 

NADPH oxidase activity and oxidants for NET release [154], (jjj) the amount of time (min vs. 390 

hours) required for NET release [154, 159, 160]. While (jj) and (jjj) are discussed in detail 391 

elsewhere, we will focus here on in vivo release of NETs, and the concept that neutrophils 392 

remain alive and continue to phagocytose pathogens while maintaining directional cell 393 

movement (chemotaxis) [76]. These cells were demonstrated to be intact and alive by their 394 

ability to exclude cell viability dyes in vivo [76, 159]. It makes intuitive sense that live 395 

neutrophils would make NETs in an organized manner without releasing their contents 396 

including bacteria and danger signals. Analyses of SEM images of single cells showed that 397 

neutrophils release these structures by a vesicular transport in that way preserving the 398 
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integrity of the plasma membrane [76, 160]. In contrast, most of the in vitro studies use PMA 399 

and report cell death, or even rupture of neutrophils during NET production. It is conceivable 400 

that neutrophils outside their natural environment are always perturbed, no matter how 401 

careful and gentle the handler is and no matter how much care is taken to reduce in vitro 402 

environmental artefact. Indeed, isolation of neutrophils on a coated coverslip in HBSS is 403 

quite different from a neutrophil in the vasculature adherent to endothelium under shear 404 

conditions in the presence of whole blood. One role for neutrophils is to detect environmental 405 

perturbations and as such it is not surprising that even under the most gentle of conditions, 406 

control neutrophils will take up some sytox green in vitro, an event never seen under control 407 

conditions in vivo. Importantly, some recent reports over the years suggest that some 408 

neutrophils release NETs in vitro but remain viable [161]. For example S.aureus in vitro 409 

seems to cause NET release independent of cell death [76, 160]. Moreover, NET release 410 

from mitochondria by neutrophils has been reported and is also a viable process [53]. These 411 

examples clearly demonstrate that when possible, the tandem in vitro and in vivo approach 412 

should be employed for NET studies.  413 

Another phenomenon which could not be detected without intravital imaging in vivo is the 414 

actual impact of DNase on NETs. It is worth mentioning that in vivo, NETs under shear 415 

conditions anchor to the vessel wall and become immobilized [154]. In videos recorded in 416 

real time, one can observe that DNase very efficiently removes the DNA scaffold of anchored 417 

NETs, but not the protein components of NETs (elastase or histones) [154]. This inability to 418 

clear many of the protein components of NETs is a consequence of secondary anchoring of 419 

these proteins to endothelial von Willebrand factor (VWF). This finding contrasts in vitro 420 

observations in which DNase dissolves the NET structure [14], and without anchoring of NET 421 

proteins, the entire NET seems to disappear. It is worth noting though that DNases may 422 

unveil NET-associated proteases such as elastase or cathepsin G to their endogenous 423 

inhibitors. The proteases are normally sheltered and protected by the DNA itself and thus 424 

DNases might reduce tissue damage [162].  425 
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2G. NETs in ductal structures 426 

Moritz Leppkes, Erlangen, Germany 427 

Neutrophils have the capacity to actively trespass epithelial layers from the basolateral to the 428 

apical side [163]. This may lead to the accumulation of neutrophils on epithelial surfaces 429 

including alveolar and bronchiolar lumen in the lung, the nasal sinuses, the gastrointestinal 430 

lumen, ducts of exocrine glands including the lactating breast, the prostate, the bladder, 431 

salivary, sebaceous and lacrimal glands and the biliary and pancreatic ducts. Cavities of the 432 

body can also be infiltrated by large amounts of neutrophils including the pleural, peritoneal, 433 

synovial or meningeal cavity. There is no circulation of blood in the cavities and ductal lumina 434 

of the body. Special conditions with regard to oxygenation, pH, bicarbonate-pCO2 levels, 435 

ionic and osmotic constitutions may, therefore, exist at various anatomic sites. These 436 

conditions strongly influence the function of neutrophil granulocytes [164]. On the other hand, 437 

the presence and function of neutrophils strongly alter the environmental conditions and 438 

impact neighboring epithelium: metabolic needs of neutrophils may lead to a reduction of 439 

glucose, an increase in lactate and a decrease in pH, while neutrophil oxidative burst may 440 

further reduce local oxygen saturation and induce hypoxic signaling in epithelial cells [165]. 441 

Epithelial cells are equipped to functionally interact with trespassing neutrophils and may 442 

upregulate adhesion molecules (e.g. ICAM-1) on the apical surface of the cells to guide 443 

neutrophil adhesion and function [163]. In samples derived from both mice and men, we 444 

have observed the presence of neutrophil aggregates inside the lumina of ductal structures 445 

in acute inflammatory attacks [166]. These neutrophil aggregates display intact neutrophils 446 

with segmented nuclei which are surrounded by amorphous material including extracellular 447 

DNA. Both nuclei and the adjacent extracellular DNA display citrullinated histones and 448 

granular proteins typical of NETs (MPO, neutrophil elastase). In our view, NET formation 449 

strongly contributes to the formation of these intraductal aggregates. Neutrophil aggregates 450 

on epithelial surfaces preferentially showed citrullination of extracellular and intracellular 451 

histones, while neutrophils inside the parenchymal tissues were rather H3cit-negative. These 452 

findings point to specific conditions within ductal structures, which facilitate PADI4 activity 453 
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and NET formation. Factors which contribute to NET formation may include activation of 454 

homotypic aggregation between neutrophils and neutrophil-epithelial adhesion molecule 455 

activation, as well as environmental factors within the specific epithelial lumen including the 456 

pH-bicarbonate-pCO2-axis [167]. 457 

 458 

2H. Activated platelets entice neutrophils to generate NETs. 459 
Angelo Manfredi, Norma Maugeri & Patrizia Rovere-Querini, Milano, Italy 460 
 461 
A paroxysmal burst of interaction with formation of neutrophil/platelet circulating heterotypic 462 

aggregates contributes to intense vascular inflammation, including that occurring in sepsis, 463 

systemic autoimmune diseases, acute coronary syndromes and some neoplasms [168]. The 464 

mechanisms by which interacting platelets and neutrophils damage vessels are only partially 465 

known. However, activation of the platelet toll-like receptor 4 by LPS eventually results in 466 

neutrophils releasing NETs, which might amplify and sustain the vascular injury [14, 159]. 467 

Sterile stimuli causing platelet activation also commit neutrophils to generate NETs in static 468 

and flowing conditions, in the presence or absence of plasma and independently of the 469 

platelet agonist. Moreover NETs recruit and activate platelets [169, 170] possibly enforcing a 470 

self-sustaining vicious circle sustaining inflammation and tissue injury. NET formation 471 

induced by activated platelets abates in the presence of competitive antagonists of the 472 

prototypic alarmin HMGB1 or by using Hmgb1-/- platelets [171, 172]. Platelets indeed release 473 

HMGB1 upon activation [171, 173, 174] and RAGE, a well-characterized neutrophil receptor 474 

for HMGB1, mediates NETs formation caused by platelet-derived signals [171, 172]. The 475 

ability of platelet-derived HMGB1 to prompt neutrophil autophagy might be important to 476 

sustain the metabolic requirement associated to the process [171, 175]. HMGB1-expressing 477 

platelets are detectable along the NETs of human coronary thrombi, while deletion of platelet 478 

HMGB1 reduces/prevents deep vein thrombosis [172]. Platelet-derived disulfide HMGB1 479 

facilitates the formation of NETs via RAGE eventually leading to obstructive venous 480 

thrombosis in the mouse [176] while the phagocytosis of activated platelets and of apoptotic 481 

cells dramatically reduce the ability of neutrophils to generate NETs [177, 178]. Thus 482 
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platelets might represent in physiological and pathological conditions a critical player tuning 483 

the sensitivity of neutrophils to inflammatory and thrombogenic stimuli and an interesting 484 

novel target for molecular intervention. 485 

 486 
2I. The role of NETs in SLE 487 
Mark J Shlomchik & Rachael A Gordon, Pittsburgh, USA 488 
 489 
SLE is a multisystem autoimmune disease in which loss of tolerance to nucleic acids and 490 

nucleoproteins results in rampant immune activation and end-organ damage[179]. NETs are 491 

postulated to be a primary and non-redundant source of antigenic nucleic acids in lupus [20, 492 

57, 122, 125, 126, 180, 181]. This paradigm is challenged by murine studies in which 493 

classical NETs were abolished by genetically deleting essential components of the NADPH 494 

oxidase complex in the spontaneous MRL.Faslpr [88] and NZM.2328 [182] lupus mouse 495 

models or the pristane-induced lupus (PIL) system [87] NADPH oxidase-deficiency 496 

exacerbated multiple manifestations of SLE and immune activation [87, 88, 182], a finding 497 

that extends to human patients [145, 183, 184, 185, 186]. However, it is possible that global 498 

regulatory properties of NADPH oxidase and NET formation of nuclear or mitochondrial 499 

origin independent of NADPH oxidase confound these findings. Furthermore, inhibitors of 500 

PAD4, a distal mediator of NET formation [39, 41, 187], are reported to improve lupus and 501 

proliferative nephritis in murine models [142, 188, 189]. In contrast to these inhibitor studies, 502 

genetic deletion of PAD4 in the MRL.Faslpr model does not ameliorate any aspect of 503 

nephritis, loss of tolerance, or immune activation [147] Paralleling these observations, a 504 

pharmacological approach to inhibit PAD4 in both the anti-GBM model of proliferative 505 

nephritis and a human serum transfer model of SLE nephritis [190] had no effect on end-506 

organ damage [147]. Intriguingly, PAD4-deficient mice subjected to the PIL model had 507 

elevated titers of antinuclear autoantibodies, inflammatory mediators, and exacerbated 508 

glomerulonephritis [87]. Collectively, these findings do not support a dominant role for NETs 509 

in SLE pathogenesis and should prompt a reevaluation of the concept that NETs promote 510 

autoimmunity.  511 
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2J. NETs in glomerulonephritis 512 
Johan van der Vlag & Elmar Pieterse, Nijmegen, The Netherlands 513 
 514 

Several studies showed a deleterious role of NETs in glomerulonephritis. Murine models as 515 

well as human renal biopsies revealed the presence of NETs in multiple renal pathologies, 516 

including lupus nephritis [116, 191], anti-GBM nephritis [192], thrombotic microangiopathies 517 

[193] and ANCA-associated vasculitis [118]. An overlapping feature in these diseases 518 

appears to be the failure of circulating endonucleases to adequately degrade NETs [116, 519 

122, 191, 194, 195]. In particular, the capacity of serum to degrade NETs ex vivo seems to 520 

correlates with renal function and disease activity in the aforementioned diseases [116, 122, 521 

191]. In addition to an impaired degradation, the formation of NETs seems to be enhanced 522 

[122, 194, 195, 196]. Together, the imbalance between NET formation and NET degradation 523 

leads to a prolonged exposure of NETs to glomerular endothelial cells, thereby jeopardizing 524 

the integrity of the glomerular filtration barrier. Four mechanisms through which NETs could 525 

inflict glomerular damage have been proposed. The first mechanism is mediated by histones, 526 

the main constituents of NETs, which appear to be direct mediators of cell death of both 527 

podocytes and glomerular endothelial cells [197, 198]. Indeed, cytotoxic effects of 528 

extracellular histones have long been acknowledged [199]. The second mechanism involves 529 

neutrophil elastase, the main proteolytic enzyme within NETs [191]. Neutrophil elastase 530 

specifically cleaves the intercellular junction protein VE-cadherin, which impairs endothelial 531 

monolayer integrity and causes transendothelial albumin leakage. The third mechanism also 532 

involves neutrophil elastase, since the elastase-mediated cleavage of VE-cadherin induces 533 

β-catenin signaling to facilitate a process known as endothelial-to-mesenchymal transition. 534 

This endothelial-to-mesenchymal transition has previously been linked to (renal) fibrogenesis 535 

and may therefore explain observations that the inhibition of NET formation protects against 536 

age-related organ fibrosis [170]. A fourth mechanism of NET-mediated glomerular injury is 537 

mediated by the complement system, as NETs can activate both the classical and alternative 538 

pathway of the complement system [122, 124, 200]. Regardless the precise mechanism 539 
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through which NETs compromise glomerular integrity, restoring the balance between NET 540 

formation and NET degradation may hold the key to prevent NETs from damaging these 541 

pivotal organs. 542 

 543 
2K. Integrin mediated NET formation and platelets 544 
Alexander Zarbock, Münster, Germany 545 
 546 
In addition to being important elements in thrombosis and hemostasis, platelets have an 547 

important role in the inflammatory response. As platelets express toll-like receptors, they can 548 

also detect pathogens and can be activated by them. Activation of platelets leads to the 549 

secretion of chemokines, various cytokines, and growth factors stored within their granules, 550 

and the expression and activation of cell adhesion molecules that allows interaction with 551 

other immune cells, mainly neutrophils and monocytes. The interaction of activated platelets 552 

with neutrophils might induce the formation of neutrophil extracellular traps (NETs). NETs are 553 

formed by proteases, chromatin, and antimicrobial proteins, and their main function is to trap 554 

and kill fungi, virus, and bacteria, avoiding their dissemination. Besides microorganisms, NET 555 

formation might be triggered by pro-inflammatory molecules and platelets. During the 556 

interaction with platelets, neutrophils have to be simultaneously activated by integrin-557 

mediated outside-in- and G-protein-coupled receptor (GPCR) signaling to induce NET 558 

formation [201]. Targeting NET components by DNAse1 application or neutrophil elastase-559 

deficient mice protected mice from tissue damage, whereas DNase1-deficient mice had 560 

aggravated tissue damage. Therefore, the uncontrolled formation of NETs might exert tissue 561 

damage and has been involved in the pathophysiology of different diseases. 562 

 563 
2L. NETs and regulation of inflammation in familial Mediterranean fever  564 
Panagiotis Skendros, Ioannis Mitroulis & Konstantinos Ritis, Alexandroupolis, Greece 565 
 566 
Familial Mediterranean fever (FMF) is a prototype IL-1β-mediated autoinflammatory disorder 567 

associated with mutations in the MEFV gene encoding the protein pyrin and characterized by 568 

inflammatory, self-limited, attacks often triggered by various stress factors [202]. The crucial 569 

role of neutrophils in FMF attacks through the release of NETs has been recently 570 
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demonstrated [203, 204]. Neutrophils during FMF attack spontaneously release NETs 571 

decorated with bioactive IL-1β. These structures are able to stimulate the expression of IL-1β 572 

by mononuclear cells, resulting in further propagation of IL-1β-mediated inflammation [203]. 573 

Concomitantly, NETs themselves can inhibit further NET generation, providing a homeostatic 574 

regulatory mechanism that might be associated with the resolution of inflammation in FMF 575 

[203]. Current studies have linked autophagy with pyrin function and NET-associated IL-1β 576 

responses [203, 204, 205, 206, 207, 208]. Neutrophils from FMF patients in remission are 577 

resistant to NET formation, which is correlated with low basal autophagy levels, while the 578 

induction of autophagy primes neutrophils to release NETs [203, 204, 209]. In this context, 579 

the “two-hit” model proposes that the inflammatory environment of FMF initially induces the 580 

expression of IL-1β, while an additional autophagy-related stimulus enables NETs formation 581 

and extracellular exposure of IL-1β via NETs [203, 204, 210]. To this end, transcriptome 582 

analysis of neutrophils derived from FMF patients revealed the role of mTOR repressor 583 

REDD1 as a key regulator of FMF attack, linking environmental stress with autophagy-584 

mediated NET formation and NET-driven IL-1β inflammation [204]. REDD1/NET 585 

formation/IL-1β axis is also involved in the pathogenesis of other autoinflammatory disorders, 586 

such as Still’s disease and ulcerative colitis, promising novel diagnostic and therapeutic 587 

options in autoinflammation [204, 205, 208, 210].  588 

 589 
2M. NETs in periodontitis 590 
Ljubomir Vitkov, Salzburg, Austria and Homburg, Germany 591 
 592 
Periodontitis is a bacterial inflammatory disease of the tooth supporting tissues characterised 593 

by alveolar bone resorption. The disease progression culminates in tooth loosening and 594 

subsequent tooth loss. Periodontitis develops on the basis of untreated gingivitis [211], which 595 

is completely reversible. As in other mucosal infections, the host response to the bacteria in 596 

periodontitis is characterised by the mucosal efflux of PMNs [212, 213]. The PMNs influx into 597 

the crevice appears to be the first line of defence against dental biofilm bacteria [214]. The 598 

crevicular PMNs barely phagocytose [215, 216, 217, 218], but abundantly form NETs [214, 599 
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218]. The main function of crevicular NETs appears to be the gingiva shielding and the 600 

evacuation of dental plaque pathogen-associated molecular patterns (PAMPs) out of the 601 

crevice. The inability to produce NETs, which occurs in the Papillon–Lefèvre syndrome and 602 

ELANE mutations, is concomitant with aggressive periodontitis and early tooth loss [93, 219, 603 

220, 221]. Periodontitis is further sustained by the deepening of the crevice and the formation 604 

of gingival pockets obstructing the evacuation of PAMPs and damage-associated molecular 605 

patterns, which are responsible for the self-perpetuation of the inflammation. In cases with 606 

exaggerated NET production, NETs are unable to maintain periodontal health and bystander 607 

damages occur [222]. Lipopolysaccharide (LPS) injections into the rodent gum are sufficient 608 

to cause experimental periodontitis without additional bacterial challenge. Similarly, the 609 

excess of LPS and other PAMPs produced by the dental biofilm might contribute to 610 

exaggerated NET formation [223]. Additionally, the increased PMN responsiveness may 611 

underlie NET overproduction. The exaggerated crevicular NET production might be a 612 

consequence of the PMN hyperactivity in patients with periodontitis [224, 225, 226, 227]. 613 

Interestingly, PMN hyperactivity persists even following successful periodontal therapy [228]. 614 

These findings support the idea that NET dysregulation might be a key factor responsible for 615 

periodontitis. 616 
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